
1

CS2550, Panos K. Chrysanthis – University of Pittsburgh 1

Recovery Theory

CS2550, Panos K. Chrysanthis – University of Pittsburgh 2

Storage Types

 Volatile storage
 main memory, which does not survive crashes.

 Non-volatile storage
 tape, disk, which survive crashes.

 Stable storage
 information in stable storage is "never" lost.
 There is no such physical medium; it is an

approximation that is implemented.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 3

Failure Types

 Program Failures
 logical errors, bad input, unavailable data, user cancellation
 resource limits

 System Failures
 computer hardware malfunction, power failures
 bugs in O.S, operator error

 Media Failures
 disk head crash, data transfer error,
 disk controller failure

 Unrecoverable errors
 failure to make archive dumps
 destruction of archives

CS2550, Panos K. Chrysanthis – University of Pittsburgh 4

Theory of Recovery

The goals of the recovery system are:

 When a transaction T commits
 Make the updates permanent in the database so that they

can survive subsequent failures.
 When a transaction T aborts

 Obliterate any updates on data items by aborted
transactions in the database.

 Obliterate the effects of T on other transactions; i.e.,
transactions that read data items updated by T.

 When the system crashes after a system or media failure
 Bring the database to its most recent consistent state.

2

CS2550, Panos K. Chrysanthis – University of Pittsburgh 5

Recovery Actions

 Recovery protocols implement two actions:

 Undo action: required for atomicity.
Undoes all updates on the stable storage by an
uncommitted transaction.

 Redo action: required for durability
Redoes the update (on the stable storage) of committed
transaction.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 6

Recovering from Failures

 Program Failures Transaction Undo
 - Removes all the updates of the

 aborted transaction
 - Does not affect any other transaction

 System Failures Global Undo
 Partial Redo
 - Effects of committed transactions

are reflected in the database

 Media Failures Global Redo

CS2550, Panos K. Chrysanthis – University of Pittsburgh 7

Cascading Aborts

 Consider the execution:
 w1(x) r2(x)

 If T1 aborts, T2 must also abort.
 T2 has an abort dependency on T1.

 In general, any transaction that reads data items updated
(written) by a transaction that aborts must also be aborted.

 What will happen if T2 is committed before T1 is aborted?
w1(x) r2(x) c2 α 1

The system cannot abort T2 without violating the semantics of
commit operations.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 8

Recoverable Executions (RC)

 To prevent unrecoverable situations the TM must keep
full track of read/write operations and delay commit
requests of transactions.

 Definition:
A transaction Tm reads x from transaction Tn in an
execution if
Tm reads x after Tn has written into it
Tn does not abort before Tm reads x and
∀ Tk: wTk (x) occurred between wTn(x) and rTm(x),

αTk precedes rTm(x).

3

CS2550, Panos K. Chrysanthis – University of Pittsburgh 9

Recoverable Executions (RC) …

 Definition:
An execution is recoverable (RC) if for every transaction
Tn commits, Tn 's commit follows the commitment of every
transaction Tm from which Tn reads.

 RULE 0:
Delay the commit of a transaction that reads

uncommitted data.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 10

Effects of Cascading Aborts

 Significant bookkeeping of who updated what and
who read what is required.

 Transactions may be forced to abort because some
other transaction happened to abort and all the
effects of the aborted transaction need to be undone
(isolation ?).

 Significant amount of computation may be lost due to
cascading aborts.

 In practice, most DBMS are designed to avoid
cascading aborts.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 11

Avoiding Cascading Aborts (ACA)

 Definition:
An execution avoids cascading aborts (ACA) if whenever a
transaction Tn reads data updated by Tm , Tm has already
committed.

 That is it ensures that every transaction reads only those values
there were written by committed transactions.

 This means the DBMS must delay each r(x) until all transactions
that previously issued a w(x) have either aborted or committed.

 RULE 1: Do not permit reading of uncommitted data.
 Note rule 1 is stronger than Rule 0 (the necessary condition for

recoverability).

CS2550, Panos K. Chrysanthis – University of Pittsburgh 12

Undoing Writes

Assume
 Database = { x, y } with initial values x = 1, y = 0
 Transactions:

T1: write(x, 2); write(y, 3); abort
T2: write(x, 8); write(y, 9); abort

4

CS2550, Panos K. Chrysanthis – University of Pittsburgh 13

 T1 T2 before image of
 write(x, 8) x = 1
 write(y, 9) y = 0
 write(x, 2) x = 8
 abort
 write(y, 3) y = 0
 abort

 when T2 aborts
 x = before image of w2(x, 8) => x = 1
 y = before image of w2(y, 9) => y = 0

 when T1 aborts
x = before image of w1(x, 2) => x = 8

 y = before image of w1(y, 3) => y = 0

An interleaved execution

CS2550, Panos K. Chrysanthis – University of Pittsburgh 14

The Lost Update Problem

Assume
Database = { x, y }

initially x = 1, y = 0
Transactions:

T1: write(x, 2); write(y, 3); abort
T2: write(x, 8); write(y, 9); commit

Consider the following execution
w1(x, 2); w2(x, 8); w2(y, 9); c2; w1(y, 3); α1

What is the state of the database after this execution ?

CS2550, Panos K. Chrysanthis – University of Pittsburgh 15

Strict Executions

 To solve the undoing writes problem, we must delay the
execution of a write(x, val) operation until the transaction that
has previously written x terminates, i.e., commits or aborts.

 Definition:
An execution is strict (ST) if it avoids cascading aborts and
overwriting of uncommitted data; i.e., it is ACA and RC.

 That is, a transaction Tn can read or write a data item updated
(written) by Tm only after Tm commits or aborts.

 RULE 2: Do not permit overwriting of uncommitted data.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 16

Recovery Correctness Criteria

RC ⊃ ACA ⊃ ST

ST
ACA

RC
All Histories

5

CS2550, Panos K. Chrysanthis – University of Pittsburgh 17

Reliability and Serializability

All histories

ACA

ST

SERIAL

RC

RIG

CSR

VSR

