
1

CS 2550 / Spring 2006
Principles of Database Systems

Alexandros Labrinidis
University of Pittsburgh

11 – Timestamp Locking and Multiversion CC

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 2550 / Spring 2006

LOCKING
under multiple
granularities

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 2550 / Spring 2006

Granularity of Locks

 Locking granularity is the size of the data item being
locked.
Example:
 page
 file
 tuple (record)
 field in a tuple
 a particular field of all tuples (column)

 The granularity of locks is unimportant w.r.t. correctness,
but it is important w.r.t. performance.

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 2550 / Spring 2006

Granularity And Atomicity Of
Reads And Writes

Assume that
 Read/Write is done by blocks
 Locking granularity is record, and
 Block b contains three records r1, r2, r3.

2

Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 2550 / Spring 2006

Granularity And Atomicity Of
Reads And Writes

Database T1 T2

b: r1 r2 r3

b: 0 0 0 rl(r1)
b’= r(b) [b’:000]
r1 ← 8 [b’:800]

 rl(r2)
wl(r1) b’= r(b) [b’:000]

b: 8 0 0 w(b, b’)
r2 ← 6 [b’:060]
wl(r2)

b: 0 6 0
w(b, b’)

Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 2550 / Spring 2006

Granularity And Atomicity Of
Reads And Writes

 The granularity of locking must be at least as coarse as
the granularity of the atomic read and write.
OR
 Place another lock on block while read or write is performed;

release it when operation completes (not according to 2PL rule).
 Use Multi-Granularity Locking.

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 2550 / Spring 2006

Multi-Granularity Locking

 Define a hierarchy of granules where lower level granules are finer:

Database

Areas

Files

Records

Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 2550 / Spring 2006

Multi-Granularity Locking

 An instance of this hierarchy might be:

3

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 2550 / Spring 2006

Explicit, Implicit, And Intention Locks

 A lock on a granule x, explicitly locks x, and implicitly all
its descendants in the same mode.

 If Ti wants to lock a record, say R1.1, all R1.1's ancestors
must be checked for a lock; R1.1 may be implicitly locked.
 If implicit locking is not available, a transaction Ti that locks coarse

granules should also lock all descendants.
 This defeats the purpose of introducing multiple granules!

Why ?

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 2550 / Spring 2006

Explicit, Implicit, And Intention Locks

 An intention lock on an item x means that a transaction
performs some operation on a descendant of x.
 What is the need for intention locks ?

 The operation may be determined by the type (mode of the
intention lock:
 irl (intention to read lock)
 iwl (intention to write lock)
 riwl (read intention to write lock)

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 2550 / Spring 2006

Multi-Granularity 2PL Protocol

 r w ir iw riw
r y n y n n
w n n n n n
ir y n y y y
iw n n y y n

 riw n n y n n

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 2550 / Spring 2006

Multi-Granularity 2PL Protocol

Growing Phase (top down manner)
 The root of hierarchy must be locked first.
 To set rl(x) or irl(x), Ti must have an irl or iwl on x's parent.
 To set wl(x) or iwl(x), Ti must have an iwl on x's parent.
 To read (write) x, Ti must have an rl (wl) on x or one of its ancestors (i.e., must be

implicitly or explicitly locked).

Shrinking Phase (bottom up manner)
 Ti cannot release a lock on x if it holds a lock on any of x's children.
 Once Ti unlocks at item, it cannot request another lock on any item.

4

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 2550 / Spring 2006

Implementing MGL

 To rl(x) (or wl(x)), we must first irl (or iwl) all of x's
ancestors

 Who does this ?
 Who knows the granularity hierarchy in a system ?
 How about the Lock Manager ?
 How about application programmers ?

 Scheduler?
 It predicts the need for coarse granularity locks based on the

transaction's recent behavior
 it uses lock escalation.

 In the system, where queries are compiled, the compiler
may also generate coarse grain requests.

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 2550 / Spring 2006

Implementing MGL
 To rl(x) (or wl(x)), we must first irl (or iwl) all of x's ancestors
 Who does this ?

 Who knows the granularity hierarchy in a system ?
 How about the Lock Manager ?

The LM has no idea of granules, etc.
 How about application programmers ?

They do not bother with lock/unlock operations even for a single item.
 A scheduler sends the appropriate lock requests to the LM. It predicts the need for coarse granularity

locks based on the transaction's recent behavior using escalation.
 In the system, where queries are compiled, the compiler may also generate coarse grain requests.

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 2550 / Spring 2006

Lock Escalation

 Transactions start locking at fine granularity.

 When the number of lock requests exceeds a threshold,
the scheduler (or TM) may do one of the following:
 Escalate the granularity of the transaction's lock requests.

 Escalating lock requests from level lk to level lk – 1
implies a lock conversion on level lk - 1.

 Restart the transaction, this time setting coarser grain locks.

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 2550 / Spring 2006

Lock Escalation

5

Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 2550 / Spring 2006

Timestamp Ordering

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 2550 / Spring 2006

Timestamp Ordering

 The basic idea:
 Each transaction Ti has a timestamp ts(Ti).
 If the scheduler receives an operation by Ti

 and it has already processed a conflicting operation by Tj

 and ts(Ti) < ts(Tj)
 then Ti is aborted.

 When a transaction aborts, it must restart with a new (i.e.
larger) timestamp.

Alexandros Labrinidis, Univ. of Pittsburgh 19 CS 2550 / Spring 2006

Max Read/Write Timestamps

 To decide whether an operation is in timestamp order, we associate two values
with each data item x.

 max-rts(x):
the max ts of transactions that performed a Read on x.

If ts(Ti) = max-rts(x) then Ti is the youngest transaction that has read X successfully

 max-wts(x):
the max ts of transactions that performed a Write on x.

If ts(Ti) = max-wts(x) then Ti is the youngest transaction that has written X
successfully

Alexandros Labrinidis, Univ. of Pittsburgh 20 CS 2550 / Spring 2006

Read/Write in Basic TO

 Readi(x)
if ts(Ti) < max-wts(x) then

Abort Ti

else
send Ri(x) to DM;
max-rts(x) = max(max-rts(x), ts(Ti))

endif;

 Writei(x)
if ts(Ti) < max-rts(x) or ts(Ti) < max-wts(x) then

Abort Ti

Else
send Wi(x) to DM;
max-wts(x) = ts(Ti)

endif

6

Alexandros Labrinidis, Univ. of Pittsburgh 21 CS 2550 / Spring 2006

Timestamp Table

 These rules assume that each operation runs to
completion before the next one is submitted to DM.

 For example,
S:W1(x)R2(x), with ts(T1) < ts(T2)

is a legal TO schedule.
 However, when the the scheduler sends R2(x) to DM,

it must know that W1(x) is finished.
 Thus, we need

 r-in-progress(x): number of transactions reading x
 w-in-progress(x): number of transactions writing x (0 or 1)
 waiting-list(x): transactions waiting to access x.

Alexandros Labrinidis, Univ. of Pittsburgh 22 CS 2550 / Spring 2006

Timestamp Table

 This information is stored in the timestamp table.

1

Alexandros Labrinidis, Univ. of Pittsburgh 23 CS 2550 / Spring 2006

Implementing Basic TO Rules

 Readi(x)
if ts(Ti) < max-wts(x) then

Abort Ti

else if w-in-progress(x) = 0 then
send Ri(x) to DM
max-rts(x) = max(max-rts(x), ts(Ti))
r-in-progress(x) = r-in-progress(x) + 1

else
insert Ri to waiting-list(x) in timestamp order

end if

Must also consider waiting list

Alexandros Labrinidis, Univ. of Pittsburgh 24 CS 2550 / Spring 2006

Implementing Basic TO Rules

 Writei(X)
 if ts(Ti) < max-rts(x) or ts(Ti) < max-wts(x) then

Abort Ti
else if r-in-progress (x) = 0 and w-in-progress(x) =
0
then

send Wi(x) to DM
max-wts(x) = ts(Ti)
w-in-progress(x) = 1

else
insert Wi to writing-list(x) in timestamp order

end if

Must also consider waiting list

7

Alexandros Labrinidis, Univ. of Pittsburgh 25 CS 2550 / Spring 2006

Example

max-rts max-wts r-in-progress w-in-progress waiting-list
Initially 0 0 0 0 -
R1(x) 1 0 1 0 -
R3(x) 3 0 2 0 -
W2(x) Abort T2 (because ts(T2) <max-rts)
W7(x) 3 0 2 0 W7

R6(x) 6 0 3 0 W7

ack(R1(x)) 6 0 2 0 W7

ack(R3(x)) 6 0 1 0 W7

Admission Scheduling to DM

Alexandros Labrinidis, Univ. of Pittsburgh 26 CS 2550 / Spring 2006

Example

 max-rts max-wts r-in-progress w-in-progress waiting-list
R8(x) 6 0 1 0 W7 , R8

ack(R6(x)) 6 0 0 0 W7 , R8
 6 7 0 1 R8

R5(x) Abort T5 (because ts(T5) <max-wts)
W4(x) Abort T4 (because ts(T4) <max-rts and max-wts)

R9(x) 6 7 0 1 R8 , R9

ack(W7(x)) 6 7 0 0 R8 , R9
 9 7 2 0 -

Alexandros Labrinidis, Univ. of Pittsburgh 27 CS 2550 / Spring 2006

Basic TO and Recovery

 Basic TO is not strict or ACA
 does not prohibit overwriting of uncommitted data.
 We must somehow delay Wi(x) if x was previously written by

Tj until Tj terminates.
 If we do not want cascading aborts we must also delay read

operations on uncommitted data.

 Solution
 The scheduler sets w-in-progress to 1 when a Ti starts the

write operation on some x.
It resets w-in-progress to 0 when Ti terminates and not
when Ti finishes writing on x.

Alexandros Labrinidis, Univ. of Pittsburgh 28 CS 2550 / Spring 2006

Thomas' Write Rule

 Consider transactions T1, T2, and T3 where ts(Ti) = i.
Assume the scheduler has already processed the following
sequence of operations:

W1(x)W3(x)
 According to basic TO, if the scheduler receives W2(x), T2

should abort.

 TWR says ...
 No problem, simply ignore T2's write operation;

 send an ack that W2(x) is successfully performed.
 What matters is that the last write operation on x was performed by

the transaction with the maximum ts.

8

Alexandros Labrinidis, Univ. of Pittsburgh 29 CS 2550 / Spring 2006

Read Operations and TWR

 Assume transactions T1, T2, T3, T4, and T5 and that the
scheduler has already received these operations:

W1(x)R3(x)W5(x)
 If the scheduler receives W4(x), could this operation be

ignored?
 Yes. It is like executing: W1(x)R3(x)W4(x)W5(x)

 If the scheduler receives W2(x), could this operation be
ignored?
 No. The correct schedule would be:

W1(x)W2(x)R3(x)W5(x)
but that's impossible, because T3 already read the write of T1. So
W2(x) should be rejected.

Alexandros Labrinidis, Univ. of Pittsburgh 30 CS 2550 / Spring 2006

TO With TWR

 Writei(x):
 if ts(Ti) < max-rts(x) then

abort Ti
else if ts(Ti) < max-wts(x) then

ignore Wi(x) (i.e., assume it is done)
else if w-in-progress(x) = 0 and r-in-progress(x) = 0

then
send Wi(x) to DM
max-wts(x) = ts(Ti)
w-in-progress(x) = 1

else
insert Wi to waiting-list(x) in timestamp order

end if

 Readi(x): Same as in Basic TO

Alexandros Labrinidis, Univ. of Pittsburgh 31 CS 2550 / Spring 2006

Timestamp Table Management

 To process an operation on x, we need timestamp
information for x (for every x). Thus, the timestamp table
may become too long.

 The solution can be based on the following idea:
 The scheduler can delete all x for which it can be sure that it will

not receive operations on x from a transaction whose ts is less than
max-wts(x).

 Two solutions

 Based on the ts of the oldest active transaction.
 Based on timeout.

Alexandros Labrinidis, Univ. of Pittsburgh 32 CS 2550 / Spring 2006

Based on the Oldest Transaction

 The scheduler keeps the timestamp of the oldest active
transaction Toldest
 When the table becomes too long, the scheduler removes all x for

which
max-rts(x) < ts(Toldest) and max-wts(x) < ts(Toldest)

 In this case, we are certain that no transaction should abort when it
tries to access a data item which is not in the table.

9

Alexandros Labrinidis, Univ. of Pittsburgh 33 CS 2550 / Spring 2006

Timeout

 Assume TM uses a real time clock to generate
timestamps. Then at a given time t, we are almost sure
that no transaction is active in the system with a
timestamp less then t-δ .

 The scheduler periodically does the following:
 It sets tsmin to be t-δ .
 It removes from the timestamp table all x for which max-rts and

max-wts are less than tsmin.
 It marks the table with tsmin.

Alexandros Labrinidis, Univ. of Pittsburgh 34 CS 2550 / Spring 2006

Timeout

 Now, to process some operation on x, the scheduler must
proceed as follows:
 if x exists in the table proceed as usual.
 if x is not in the table and ts(Ti) ≥ tsmin add x to the table and

proceed as usual.
 if x is not in the table and ts(Ti) < tsmin abort Ti.

Alexandros Labrinidis, Univ. of Pittsburgh 35 CS 2550 / Spring 2006

TO Versus 2PL

In the following, assume that ts(Ti) = i.

 In 2PL, a transaction is never aborted because it submitted
an operation too late; it simply waits.

 Example: the scheduler receives the following requests
R2(x)C2W1(x)C1

 In TO, T1 must abort T1 submits W1(x) too late.
 In 2PL, it is a legal sequence of operations.

Alexandros Labrinidis, Univ. of Pittsburgh 36 CS 2550 / Spring 2006

TO Versus 2PL

 In 2PL, a transaction Ti does not unlock an item x until
after it has locked all data items it wants to access.
Meanwhile x is unavailable to other transactions.

 Example: The scheduler receives the following requests
R1(x)W2(x)C2R1(y)C1

 In 2PL, T2 can not write lock x until T1 unlocks x (after R1(y)).
 In TO, it is a legal sequence of operations.

 Deadlock can not arise in TO.
 Starvation?

10

Alexandros Labrinidis, Univ. of Pittsburgh 37 CS 2550 / Spring 2006

 Multi-version
Concurrency

Control

Alexandros Labrinidis, Univ. of Pittsburgh 38 CS 2550 / Spring 2006

Multiversion Concurrency Control

 Assume the following sequence of events.
W0(x) C0W2 (x) R1(x) C2C1

 This sequence CANNOT be produced by a strict 2PL,
or Timestamp-Ordering, because
 Strict 2PL

 T1 can not read lock x until after C2 .
 TO

 Since ts(T1) < ts(T2), T1 should abort when it tries to
R1(X).

Alexandros Labrinidis, Univ. of Pittsburgh 39 CS 2550 / Spring 2006

Multiversion Concurrency Control

An Idea !!

 If we had kept the old version of x when W2 (x),
then we could avoid having to delay T1 in (2PL) or
abort T1 (in TO) by having T1 read the before
image of x

 Disadvantages?
 Complexity
 Storage space

Alexandros Labrinidis, Univ. of Pittsburgh 40 CS 2550 / Spring 2006

Basic Idea

 The DM keeps a list of versions for each x.
 Version xi means the version of x produced by a Write on x by transaction Ti.

 When the scheduler receives a Wi (x), it sends a Wi(xi) to DM. Each Write(x)
produces a new version of x.

 When the scheduler receives a Ri (x), it must decide when to send the
operation to DM and which version of x to read. A Read operation to the
DM will be of the form Ri(xi) .

 If a transaction T is aborted, any version it created is destroyed.

11

Alexandros Labrinidis, Univ. of Pittsburgh 41 CS 2550 / Spring 2006

Basic Idea

 Example: Assume the scheduler receives:
W0 (x) C0W2(x) R1(x) C2C1

The scheduler sends to DM the following operations:
W0 (x0) C0W2 (x2) R1(x0) C2C1

 The above is a legal schedule in both types of
schedulers: strict 2PL, TO.

Alexandros Labrinidis, Univ. of Pittsburgh 42 CS 2550 / Spring 2006

Visibility of Versions

 Versions are under the absolute control of the scheduler
and data manager.
 Users (transactions) still reference data items as usual not by

versions.
 In applications where versions of x do exist, each version of x

must be considered as an individual item.

 One-copy serializability (1SR) is the correctness
criterion for Multiversion Concurrency Control.
 1SR requires that transaction executions are equivalent to a

serial execution of those transactions on a one-copy database.

Alexandros Labrinidis, Univ. of Pittsburgh 43 CS 2550 / Spring 2006

Alternatives for
Storing

Multiple Versions

Alexandros Labrinidis, Univ. of Pittsburgh 44 CS 2550 / Spring 2006

Storing multiple versions

 Horizontal Redundancy
 Extend database schema horizontally

 Extra “instances” of fields that change
 2VNL (2VNL/k)

 Vertical Redundancy
 Extend database schema verticaly

 Extra tuples with modified fields
 MVNL

 [additional material on the web page]

12

Alexandros Labrinidis, Univ. of Pittsburgh 45 CS 2550 / Spring 2006

 Multi-version
Timestamp
Ordering

Alexandros Labrinidis, Univ. of Pittsburgh 46 CS 2550 / Spring 2006

Multiversion Timestamp Ordering

 Each transaction Ti has a unique timestamp ts(Ti).

 Each version of x is labeled with the timestamp of the
transaction that wrote x.

 The scheduler translates operations on data items into
operations on versions of these data items.

Alexandros Labrinidis, Univ. of Pittsburgh 47 CS 2550 / Spring 2006

Scheduling Operations

 Ri(x)
 Find xk, the version of x, where Tk has the largest timestamp less

than or equal to ts(Ti).
 Send Ri(xk) to DM.

 Therefore, a Read operation is never delayed or rejected.

 Wi(x)
 If an operation Rj(xk), where ts(Tk) < = ts(Ti) < = ts(Tj),

has already been processed then reject Wi(x), and restart Ti.
 Otherwise, send Wi(xi) to DM.

 Write operations may abort

Alexandros Labrinidis, Univ. of Pittsburgh 48 CS 2550 / Spring 2006

Scheduling Operations

 Ci
 Delay Ci until all transactions that wrote versions read by Ti

commit (to ensure recoverability).
 If one of those transactions aborts, abort Ti too.

 Thus, a read-only transaction may be aborted.

 Can we avoid cascading aborts altogether by using the
write-in-progress bit?

13

Alexandros Labrinidis, Univ. of Pittsburgh 49 CS 2550 / Spring 2006

Deleting Old Versions

 The scheduler must delete versions from the oldest to
the newest.
 Keep the smallest timestamp, tsmin, of all currently active

transactions (i.e., the timestamp of the oldest active
transaction).
 When the oldest transaction Ti terminates, find the most

recent xk such that
 k ≤ ts(Ti), and
 xk is not the most recent version of x.

 Delete all committed xj for which j < k.

Alexandros Labrinidis, Univ. of Pittsburgh 50 CS 2550 / Spring 2006

Deleting Old Versions

 Example: Assume
Versions: x1, x4, x5, x8, x12, x20

Active transactions: T6, T10, T12, T14

If T10 commits which version should be deleted?
if T6 commits which version should be deleted?

 Alternatively, delete periodically all versions older than
some number.
 If the scheduler receives Ri(xj) and xj has been deleted, it

aborts Ti.

Alexandros Labrinidis, Univ. of Pittsburgh 51 CS 2550 / Spring 2006

 Revisiting 2PL

Alexandros Labrinidis, Univ. of Pittsburgh 52 CS 2550 / Spring 2006

Two Version 2PL (2V2PL)

 The DM keeps one or two versions of each data item x.
 When a Ti wants to write x, it sets a wl(x) and it creates

a new version of x, xi.
 The wl(x) prohibits other transactions from writing x.
 When Ti commits, the xi version of x becomes x's unique

version (the before image of x may now be deleted).
 Readers are allowed to place a rl on the a write locked x

and they read the previous version of x (the before
image).
Therefore, a Read operation is performed on
committed updates only (no cascading aborts).

14

Alexandros Labrinidis, Univ. of Pittsburgh 53 CS 2550 / Spring 2006

Commit

 To delete the before image of xi when Ti commits, we
need to know that no other transaction reads x.

 We introduced a third lock, commit lock. The
compatibility matrix is

Alexandros Labrinidis, Univ. of Pittsburgh 54 CS 2550 / Spring 2006

Commit

 When the scheduler receives the Commit(Ti),
 It tries to convert the wl(x) on all x updated by Ti to cl.
 Since rl and cl are not compatible, the scheduler delays the

commit of Ti until no transaction reads x.
 It then sends Ci to DM.
 When ack(Ci) is received from DM, it removes the commit or

read lock from all x's locked by Ti.
 It sends Ci to TM.

Alexandros Labrinidis, Univ. of Pittsburgh 55 CS 2550 / Spring 2006

Read/Write Operations

 Writei(x)
 If there is a wl or cl on x, place Wi in waiting-list(x).
 If Ti already owns a wl on x, send Wi(xi) to DM.
 In any other case (x is unlocked or read locked), set a wli(x) and

send Wi(xi) to DM. Data item x remains unaffected.

 Readi(x)
 If there is a cl on x, place Ri in waiting-list(x).
 If Ti already owns a wl on x then send Ri(xi) to DM.
 In any other case (i.e., x is unlocked or write locked by another

transaction), set rli and send Ri(x) to DM.

Alexandros Labrinidis, Univ. of Pittsburgh 56 CS 2550 / Spring 2006

Discussion

 The 2V2PL is recoverable and avoids cascading aborts.
 Deadlocks are possible for one more reason

T1 tries to convert its rl on x to wl
T2 tries to convert its wl on x to cl

Nothing special here; use any deadlock detection or prevention
technique.

 Usually, in 2V2PL, it takes less time to commit a
transaction than to execute it.

Therefore, commit locks delay Reads less than 2PL's write locks.

