
1

CS 2550 / Spring 2006
Principles of Database Systems

Alexandros Labrinidis
University of Pittsburgh

10 – Locking

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 2550 / Spring 2006

LOCKING

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 2550 / Spring 2006

Locking

 Centralized DBMS Architecture

 Schedulers
 Aggressive
 Conservative

 Lock-based concurrency control

 Deadlocks
 Detection
 Prevention

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 2550 / Spring 2006

Centralized DBMS
T1 T2 Tn

{Start, Read(x), Write(x), Commit, Abort}

{Start, Read(x), Write(x), Commit, Abort}

Transaction Manager

Scheduler

{Start, Read(x), Write(x), Commit, Abort}
Data ManagerRecovering Manager

{Flush(x), Fetch(x), Fix(x), Unfix(x), Write(x) }
Cache Manager

Database Buffer Log Buffer

Stable Database
and Catalog

Temporary Log
Support: Transaction UNDO
Global UNDO | Partial REDO

Archive Log
Support: Global REDO

DiskRead(x,a,b)
DiskWrite(x,a,b)

Actions of Scheduler:
1. Execution
2. Reject
3. Delay

2

Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 2550 / Spring 2006

Aggressive Vs Conservative Schedulers

 A scheduler upon receiving an operation may
 Execute the operation immediately,

perhaps remembering the dependencies.
 Delay the operation.
 Reject the operation.

 A scheduler is aggressive if it avoids delaying operations
thereby running the risk of rejecting them later.
 Preferable if conflicts are rare.

 A scheduler is conservative if it deliberately delays operations
thereby avoiding their (possible) subsequent rejection.
 Attempts to anticipate future behavior of transactions.
 Preferable if conflicts are likely.

Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 2550 / Spring 2006

Types of schedulers

 Almost all types of schedulers have both an aggressive
and a conservative version.

 Extreme case of conservative scheduler is a serial
scheduler.

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 2550 / Spring 2006

Lock Based Concurrency Control

 Locking is the most common synchronization
mechanism.

 A lock is associated with each data item in the
database.

 A lock on x indicates that a transaction is performing
an operation on x.

 Lock types
 rli(x) : x is read lock by Ti (shared lock)
 wli(x) : x is write lock by Ti (exclusive lock)

Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 2550 / Spring 2006

Lock Based Concurrency Control

 Locks conflict if they are associated with conflicting
operations, i.e., operations that will form some
dependency.

 If transactions Ti and Tj request conflicting locks on
data item x and Ti locks x first, then Tj should wait until
Ti unlocks x.

– rui(x) : remove the read lock from x set by Ti

– wui(x) : remove the write lock from x set by Ti

rli (x)
wli (x)

rlj (x) wlj (x)
No Yes
Yes Yes

3

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 2550 / Spring 2006

Why Simple Mutual Exclusion
Does Not Suffice

 Assume
Database = { x, y }

Initially: x = 0, y = 1
Transactions

T1 : a = r(y); w(x, a) /* x ← y */
 T2 : b = r(x); w(y, b) /* y ← x */

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 2550 / Spring 2006

Why Simple Mutual Exclusion
Does Not Suffice

 Consider the following schedule based on mutual exclusion
T1 T2 Comments

rl(x) granted
b=r(x)
ru(x) released

rl(y) granted
a=r(y)
ru(y) released
wl(x) granted
w(x,a)
wu(x) released
commit

wl(y) granted
w(y,b)
wu(y) released
commit

Final database
state: x = 1, y = 0.
This history is not
SR! Why not?

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 2550 / Spring 2006

Basic Two Phase Locking (2PL)

 A scheduler following the 2PL protocol has two phases:
 A Growing phase
 Whenever it receives an operation pi(x) the scheduler obtains a p-

lock on x (pli(x)) before executing p on the data.
 A Shrinking phase
 Once a scheduler has released a lock for a transaction,it cannot

request any additional locks on any data item for this transaction.

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 2550 / Spring 2006

Basic Two Phase Locking (2PL)

 Example:
H1: rl(x); a = r(x); wl(y); w(y, a); ru(x); wu(y);
H2 :rl(x); a = r(x); ru(x); wl(y); w(y, a); wu(y);

 Theorem: Every 2PL history H is serializable.

 Note: Eswaran, Gray, Lorie, Traiger - ``The Notions of
Consistency and Predicate Locks in a Database System'',
CACM, vol. 19, no. 11 Nov. 1976, pp. 624-633

4

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 2550 / Spring 2006

Two Phase Locking: Serializability

 Lock point
 The point in the schedule where the transaction

has obtained its final lock
 = the end of the growing phase in 2PL

 Serializable ordering:
 Order transactions according to their lock points

 2PL does not guarantee freedom from deadlocks

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 2550 / Spring 2006

Issues Related To Locking

 Deadlock
Two or more transactions are blocked indefinitely

because each holds locks on data items upon which the
others are trying to perform operations, i.e., obtain locks.

 Livelock
Livelock occurs when a transaction is aborted and restarted
repeatedly (Cyclic Restart), e.g., because its priority is too low.
Differs from deadlock in that it allows a transaction to execute but not
to completion.

 Starvation
Starvation occurs when a transaction is never allowed to
run, e.g.,because there is always a transaction with a
higher priority.

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 2550 / Spring 2006

Conservative (Static) 2PL

 A transaction T declares in advance all data items that it
might read or write.

 A transaction is executed when the scheduler obtains all
the locks on the declared data items.

 No deadlocks since there are no lock conflicts while
transactions are executing.

 Low message passing overhead between transactions
and the scheduler.

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 2550 / Spring 2006

Conservative (Static) 2PL

But:
 Transactions are blocked for conflicts that may never

arise in an actual execution.

 Starvation is possible.

 Transactions may need to lock more data items than
really need to access.

 Requires pre-processing.

5

Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 2550 / Spring 2006

Aggressive (Dynamic) 2PL

 A transaction requests locks just before it operates on a
data item.

 If a transaction holds a read lock on an item x and later on
it decides to update x, it can (try to) convert its read lock
on x to a write lock. (This is called lock conversion.)

 A transaction cannot convert a write lock to a read lock.
This is equivalent to releasing the write lock and obtaining
a read lock.

 Transactions only lock the data items that they really
need.

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 2550 / Spring 2006

Aggressive (Dynamic) 2PL

But:
 More message passing between transactions and

scheduler.

 Transactions may deadlock.

 Cannot reorder operations later and hence may have
to abort them.

Alexandros Labrinidis, Univ. of Pittsburgh 19 CS 2550 / Spring 2006

Strict 2PL

 It is a form of aggressive (dynamic) 2PL
 transactions request locks just before they operate on

a data item.
 The growing phase ends at commit time.

 no locks can be released until commit or abort time.
 no overwriting of dirty data.
 no overwriting of data read by active transactions.
 no reading of dirty data.

 Is it easy to implement strict 2PL?

Alexandros Labrinidis, Univ. of Pittsburgh 20 CS 2550 / Spring 2006

6

Alexandros Labrinidis, Univ. of Pittsburgh 21 CS 2550 / Spring 2006

Deadlocks

 A deadlock occurs when two or more transactions are
blocked indefinitely.
 each holds locks on data items on which the other

transaction(s) attempt to place a conflicting lock.

 Necessary conditions for deadlock situations.
 mutual exclusion
 hold and wait
 no preemption
 circular wait.

Alexandros Labrinidis, Univ. of Pittsburgh 22 CS 2550 / Spring 2006

Deadlocks

 Examples:

 Example II involves lock conversion
 The scheduler restarts any transaction aborted due

to deadlock.

Alexandros Labrinidis, Univ. of Pittsburgh 23 CS 2550 / Spring 2006

Deadlock Detection: Timeout

 The scheduler checks periodically if a transaction has been
blocked for too long.
 In such a case, the scheduler assumes that the transaction is

deadlocked and it aborts the transaction.

 This method may incorrectly diagnose a situation to be a
deadlock.
 The scheduler may make a mistake and abort a transaction that

waits for another transaction that is taking a long time to finish.

 The correctness of the schedule is not affected if the
scheduler makes a wrong guess.

Alexandros Labrinidis, Univ. of Pittsburgh 24 CS 2550 / Spring 2006

Deadlock Detection: Timeout

 Fine tuning of the timeout period:
Long timeout: fewer mistakes by the scheduler, but a

 deadlock may exist unnoticed for long
 periods causing long delays.

Short timeout: quick deadlock detection, but more mistakes
 are possible thus aborting transactions not
 involved in a deadlock.

 Advantage: very simple algorithm.

 Tandem used deadlock detection based on timeout.

7

Alexandros Labrinidis, Univ. of Pittsburgh 25 CS 2550 / Spring 2006

Deadlock Detection: Wait-for Graphs

 The scheduler maintains a Waits-for Graph (WFG) in
which:
 nodes are transactions Ti, Tj, ...
 for edge Ti → Tj means that Ti is waiting for Tj to unlock a data

item.

 The WFG is acyclic iff there is no deadlock.

 What is the relation of WFG and SG ?

Alexandros Labrinidis, Univ. of Pittsburgh 26 CS 2550 / Spring 2006

Deadlock Detection: Wait-for Graphs
 Example

start T1 add T1 in WFG
start T2 add T2 in WFG
rl1(x) yes
wl2(x) no T2 → T1

start T3 add T3 in WFG
wl3(x) no T3 → T1

ru1(x) accept T2’s request drop T2 → T1

drop T3 → T1

add T3 → T2

wu2(x) accept T3’s request drop T3 → T2

commit T1 drop T1 from WFG
commit T2 drop T2 from WFG
commit T3 drop T3 from WFG

 INGRES, POSTGRES, DB2 use deadlock detection based on WFG.

Alexandros Labrinidis, Univ. of Pittsburgh 27 CS 2550 / Spring 2006

Victim Selection

 The scheduler runs a cycle detection algorithm in WFG
every time period t and for every detected cycle it selects
the ``best“ victim to abort to break the cycle.

 What constitutes the ``best" victim ?

 Factors to consider:
 The cost of aborting a transaction

 all updates must be undone.
 For how long a transaction was running.
 How long it will take a transaction to finish.

Alexandros Labrinidis, Univ. of Pittsburgh 28 CS 2550 / Spring 2006

Victim Selection

 How many deadlocks will be resolved if a particular
transaction is aborted (i.e., is the transaction in more
than one cycle?).

 How many times this transaction was already aborted
due to deadlocks (see starvation).

In practice, deadlock cycles have a very small number
of transactions and arbitrary victim selection does not
affect performance.

8

Alexandros Labrinidis, Univ. of Pittsburgh 29 CS 2550 / Spring 2006

Deadlock Prevention

 Simplest Methods:
 Predeclaration of readset and writeset. *

 Conservative 2PL

 Whenever a Ti has to be blocked because of a conflicting
lock request, the scheduler checks immediately for
deadlock involving Ti.

 a transaction may be restarted repeatedly.
 high concurrency control overhead for each read or

write lock request.
* This is known as Deadlock Avoidance Method in OS

Alexandros Labrinidis, Univ. of Pittsburgh 30 CS 2550 / Spring 2006

Wait-Die

 Each transaction is assigned a timestamp, ts(Ti).
 Timestamps are totally ordered and obtained using the

 system clock, or
 a counter.

 Suppose Ti can not obtain a lock on a data item because Tj holds a
conflicting lock on this data item.

If ts(Ti) < ts(Tj)
then Ti waits
else Ti aborts

Ti waits if it is older than Tj.
Ti aborts if it is younger than Tj.

 An aborted transaction restarts with its original timestamp.
Why ?

Alexandros Labrinidis, Univ. of Pittsburgh 31 CS 2550 / Spring 2006

Wound-Wait

 Suppose Ti requests a lock on x and Tj holds a conflicting
lock on x.

If ts(Ti) < ts(Tj)
then Tj aborts
else Ti waits

 Ti wounds Tj if Ti is older than Tj.
Ti waits for Tj if Ti is younger than Tj.

 An aborted transaction restarts with its original timestamp.

Alexandros Labrinidis, Univ. of Pittsburgh 32 CS 2550 / Spring 2006

Wait-Die Vs Wound-Wait

 When a transaction encounters a younger transaction:
 Wait-Die it never aborts.
 Wound-Wait it never aborts.
=>both methods avoid starvation.

 An older transaction conflicts with a younger transaction:
 Wait-Die it waits for the younger transaction.
 Wound-Wait it wounds every transaction it
encounters.
=> old transactions push their way.

9

Alexandros Labrinidis, Univ. of Pittsburgh 33 CS 2550 / Spring 2006

Wait-Die Vs Wound-Wait

 When a younger transaction Ti restarts, Ti may encounter
its older friend Tj that caused Ti to abort.
 Wait-Die Ti has to abort again.
 Wound-Wait Ti has to wait for Tj, not to abort.

 Once a transaction has locked all items it wants to access
(i.e., reaches the end of the growing phase)
 Wait-Die it will never abort.
 Wound-Wait it might abort because of an older

transaction.

Alexandros Labrinidis, Univ. of Pittsburgh 34 CS 2550 / Spring 2006

Lock Table

 Each entry in the lock table keeps information about a locked data
item.
Datum Locks Granted Locks Requested

(Blocked Transactions)
x <T1, rl>, < T2, rl> <T3, wl>, < T5, wl>
y < T3, wl>, <T4, rl>, < T6, wl>
...

 Lock/Unlock operations in lock table must be very fast.
 Lock/Unlock operations are serialized.
 Abort operations must be fast.
 How do you implement the lock table ?
 Rescheduling blocked and deadlocked transactions must be fast.

Alexandros Labrinidis, Univ. of Pittsburgh 35 CS 2550 / Spring 2006

Implementation of a 2PL Scheduler

Alexandros Labrinidis, Univ. of Pittsburgh 36 CS 2550 / Spring 2006

10

Alexandros Labrinidis, Univ. of Pittsburgh 37 CS 2550 / Spring 2006

Phantoms

 So far, we have considered static databases.
 What about dynamic databases that support insert and delete

operations ?
 Example: consider the following EMP database

 Transactions T1 , T2 :
 If there is no tuple whose ID = 4 in EMP, then

 insert (4, Alex, 662-8210) in EMP;

Alexandros Labrinidis, Univ. of Pittsburgh 38 CS 2550 / Spring 2006

Phantoms

 Here is a 2PL interleaved execution:
T1 : read a1, a2, a3; no tuple has ID = 4;

T2 : read a1, a2, a3; no tuple ID = 4;

T1 : insert tuple a4: (4, Alex, 662-8210);

T2 : insert tuple a5: (4, Alex, 662-8210);

Alexandros Labrinidis, Univ. of Pittsburgh 39 CS 2550 / Spring 2006

How Do We Deal With Phantoms

 2PL can deal with phantoms.

 In the previous example, T1 had to lock tuple a4 which,
however, didn't exist at that time.
 How can transactions lock phantoms ?

Alexandros Labrinidis, Univ. of Pittsburgh 40 CS 2550 / Spring 2006

How Do We Deal With Phantoms

 How did T1 know that it had to read a1, a2, a3?
 It read the EOF marker.
 It read a counter containing the number of records
 It followed pointers.

 ⇒ It read some control information.
 ⇒ Need to lock both data and control information.

 Control information such as EOF may become hot spots
 index locking
 predicate locking
 weak locks (operations must be implemented atomically)

