
1

CS 2550 / Spring 2006
Principles of Database Systems

Alexandros Labrinidis
University of Pittsburgh

09 – Transactions

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 2550 / Spring 2006

New Chapter

Chapter 15

Transactions

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 2550 / Spring 2006

Roadmap

 Concept of Transaction
 ACID properties

 Transaction State
 Implementation of Atomicity and Durability
 Concurrent Execution of Transactions

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 2550 / Spring 2006

Concept of Transaction

 A transaction is a unit of program execution that
accesses and possibly updates various data items.

 A transaction must see a consistent database.
 During transaction execution the database may be inconsistent.
 When the transaction is committed, the database must be

consistent.

 Two main issues to deal with:
 Failures of various kinds, such as hardware failures

and system crashes
 Concurrent execution of multiple transactions

2

Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 2550 / Spring 2006

ACID Properties

To preserve integrity of data, the database system must ensure:

 Atomicity
 Either all operations of the transaction are properly reflected in the database or

none are.

 Consistency
 Execution of a transaction alone preserves the consistency of the database.

 Isolation
 Although multiple transactions may execute concurrently, each transaction must

be unaware of other concurrently executing transactions.

 Durability
 After a transaction completes successfully, changes it has made

to the database persist, even if there are system failures.

Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 2550 / Spring 2006

ACID Properties (cont.)

 Consistency
 Ensuring Consistency is up to the application programmer

 Atomicity (Transaction Management)
 Keep old values around, until sure all of transaction completes
 Ensuring Atomicity is up to the database system

 Durability (Recovery Management)
 Ensuring Durability is up to the database system

 Isolation (Concurrency Control)
 Intermediate transaction results must be hidden from other

concurrently executed transactions.
 That is, for every pair of transactions Ti and Tj, it appears to Ti

that either Tj, finished execution before Ti started, or Tj started
execution after Ti finished.

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 2550 / Spring 2006

Example of funds transfer transaction

 Transaction to transfer $50 from account A to account B
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

 Consistency requirement
 sum of A and B is unchanged by the execution of the transaction

 Atomicity requirement
 if the transaction fails after step 3 and before step 6, the system

should ensure that its updates are not reflected in the database,
else an inconsistency will result.

Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 2550 / Spring 2006

Example of funds transfer (Cont.)

 Durability requirement
 once the user has been notified that the transaction has

completed (i.e., the transfer of the $50 has taken place), the
updates to the database by the transaction must persist despite
failures.

 Isolation requirement
 if between steps 3 and 6, another transaction is allowed to

access the partially updated database, it will see an inconsistent
database (the sum A + B will be less than it should be).

 Can be ensured trivially by running transactions serially:
one after the other.

 However, executing multiple transactions concurrently has
significant benefits, as we will see.

3

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 2550 / Spring 2006

Roadmap

 Concept of Transaction
 ACID properties

 Transaction State
 Implementation of Atomicity and Durability
 Concurrent Execution of Transactions

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 2550 / Spring 2006

Transaction State

 Active, the initial state; the transaction stays in this
state while it is executing

 Partially committed, after the final statement has
been executed.

 Failed, after the discovery that normal execution can no
longer proceed.

 Aborted, after the transaction has been rolled back and
the database restored to its state prior to the start of the
transaction. Two options after it has been aborted:
 restart the transaction – only if no internal logical error
 kill the transaction

 Committed, after successful completion.

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 2550 / Spring 2006

Transaction State (Cont.)

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 2550 / Spring 2006

Roadmap

 Concept of Transaction
 ACID properties

 Transaction State
 Implementation of Atomicity and Durability
 Concurrent Execution of Transactions

4

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 2550 / Spring 2006

Atomicity and Durability

 The recovery-management component of a database system
implements the support for
atomicity and durability.

 The shadow-database scheme:
 assume that only one transaction is active at a time.
 a pointer called db_pointer always points to the current consistent copy

of the database.
 all updates are made on a shadow copy of the database, and

db_pointer is made to point to the updated shadow copy only after the
transaction reaches partial commit and all updated pages have been
flushed to disk.

 in case transaction fails, old consistent copy pointed to by db_pointer
can be used, and the shadow copy can be deleted.

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 2550 / Spring 2006

Atomicity and Durability (cont.)

 Assumes:
 disks do not fail
 what else?

 Useful for text editors, but extremely inefficient for large databases
 executing a single transaction requires copying the entire database.

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 2550 / Spring 2006

Roadmap

 Concept of Transaction
 ACID properties

 Transaction State
 Implementation of Atomicity and Durability
 Concurrent Execution of Transactions

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 2550 / Spring 2006

Concurrent Execution

 Multiple transactions are allowed to run concurrently
 Advantages are:

 increased processor and disk utilization, leading to better
transaction throughput: one transaction can be using the CPU
while another is reading from or writing to the disk

 reduced average response time for transactions: short
transactions need not wait behind long ones.

 Concurrency control schemes
 mechanisms to achieve isolation, i.e., to control the interaction

among the concurrent transactions in order to prevent them
from destroying the consistency of the database

5

Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 2550 / Spring 2006

Schedules

 sequences of operations that indicate the chronological
order in which instructions of concurrent transactions are
executed

 a schedule for a set of transactions must consist of all
instructions of those transactions

 must preserve the order in which the instructions appear
in each individual transaction.

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 2550 / Spring 2006

Example Schedule 1

 T1 transfers $50 from A to B

 T2 transfers 10% of the
balance from A to B

 This is a serial schedule, in
which T1 is followed by T2.

Alexandros Labrinidis, Univ. of Pittsburgh 19 CS 2550 / Spring 2006

Example Schedule 3

 T1 transfers $50 from A to B

 T2 transfers 10% of the
balance from A to B

 This is a not serial schedule,
but is equivalent to serial
Schedule 1

 In both Schedule 1 and
Schedule 3, the sum A+B
remains the same

Alexandros Labrinidis, Univ. of Pittsburgh 20 CS 2550 / Spring 2006

Example Schedule 4

 T1 transfers $50 from A to B

 T2 transfers 10% of the
balance from A to B

 This concurrent schedule
does not preserve the value
of the sum A + B.

