
1

CS 2550 / Spring 2006
Principles of Database Systems

Alexandros Labrinidis
University of Pittsburgh

08 – Query processing and optimization

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 2550 / Spring 2006

Execution planExecution plan

Steps in processing a query

Scan, Parse, Validate

Query Optimizer

Query Code Generator

Runtime DB Processor

Code to execute query

Intermediate form of query

SQL statement

Results of running query

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 2550 / Spring 2006

Query Processing: Selections

 1) Convert to relational algebra
select   last, first
from    employee
where  salary>25000;

 Π last, first (σ salary>25000 (employee))

 2) Choose an implementation
 Factors?

 Index Type
 Query Type
 Statistics

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 2550 / Spring 2006

Implementations for Selection

 A1: linear search
 Full scan

 A2: binary search
 Assume file is ordered on attribute

 A3: using primary index (or hash key)
 Equality on key attribute

 A4: using primary/clustering index – multiple records
 Equality on non-key attribute

 A5: using secondary index
 Most general method – key/non-key attribute



2

Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 2550 / Spring 2006

Implementations for Selection - II

 A6: primary index, comparison

 A7: secondary index, comparison

Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 2550 / Spring 2006

Implementations for Selection III

 How to handle conjunction (AND) / disjunction (OR)?

 A8: Conjunctive selection using individual index
 Check simple condition first, if it has index

 A9: Conjunctive selection using composite index
 Composite on both attributes must exist

 A10: Conjunctive selection by intersection of record ptrs
 Evaluate simple conditions independently
 Produce intersection of lists of RIDs

 A11: Disjunctive selection by union of record ptrs

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 2550 / Spring 2006

Example Selection Queries

σ salary>25000 (emp)

σ ssn=123456789 (emp)

σ dept_number>5 (dept)

σ dnum=6 (emp)

σ sex=‘m’ (emp)

σ dnum=6 AND salary>25000 AND sex=‘f’ (emp)

σ salary>25000 AND salary<35000 (emp)

Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 2550 / Spring 2006

How to choose?

 Index Type
 What indexes are available for the given relations?

 Query Type
 Do we have range query, point query, conjunction?

 Statistics
 Selectivity
 Examples:

 σ sex=‘m’ (emp)

 σ ssn=‘123456789’ (emp)



3

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 2550 / Spring 2006

Query Processing: Joins

 J1: Nested-loop join

 J2: Single-loop join

 J3: Sort-merge join

 J4: Hash-join

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 2550 / Spring 2006

J1: Nested-loop join

 Join relations R and S
 A is the common attribute in R, B is the common attribute in S

 For each record t in R  (=outer loop)
 For each record s in S  (=inner loop)

 Test if t[A] = s[B]

 In practice, we are accessing an entire disk block
at a time rather than a record at a time.

 Is there any difference which relation will be inner/outer?

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 2550 / Spring 2006

J2: Single-loop join

 Join relations R and S
 A is the common attribute in R, B is the common attribute in S

 Must use an access structure to retrieve the matching
records

 Only works if an index (hash) key exists for one of the
two join attributes (A or B), say B

 For each record t in R
 Locate tuples s from S, that satisfy s[B] = t[A]

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 2550 / Spring 2006

J3: Sort-merge join

 Join relations R and S
 A is the common attribute in R, B is the common attribute in S

 IF relations R and S are physically sorted (ordered) by
the value of the join attributes
 we simply have to scan the relations
 produce match or advance pointer

 Q: what happens if the relations are not sorted?



4

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 2550 / Spring 2006

J4: Hash-join

 Join relations R and S
 A is the common attribute in R, B is the common attribute in S

 1) Single pass through relation with fewer records (R)
 Partitioning phase (into hash buckets)

 2) Single pass through other relation (S)
 Probing phase (use hash to find matching records of R)

 Q: Will this work if R does not fit in memory?

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 2550 / Spring 2006

Query Processing: Joins

 J1: Nested-loop join

 J2: Single-loop join

 J3: Sort-merge join

 J4: Hash-join
 Partition Hash Join
 Hybrid Hash Join

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 2550 / Spring 2006

Partition Hash Join

 Join relations R and S

 Partitioning Phase
 Partition hash function
 R into M partitions: R1, R2, …, RM

 S into M partitions: S1, S2, …, SM

 IDEA: Ri only needs to be joined with Si

 Probing Phase
 Perform M iterations

 Join partitions Ri and Si

 Can use nested-loop join or hash-join
 If hash-join, must use different hash function. WHY?

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 2550 / Spring 2006

Partition Hash Join – Discussion

 Q: What is the cost?
 A:  How many times each block is read/written?

 Partitioning Phase: R: read once, write once
S: read once, write once

 Probing Phase R: read once
S: read once
write results once

 Total cost = 3*(bR + bS) + bresults

 Q: What is the main difficulty of the algorithm?
 A: What is the partitioning phase relying on?

 Hash function is uniform!
 i.e. partition sizes are nearly equal in size



5

Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 2550 / Spring 2006

Hybrid Hash Join

 Variation of Partition Hash Join

 Main idea:
 Get a “free-ride” for joining the first partition during first pass

 Differences:
 Partition Hash Join:

 M partitions, single-block in memory for each one
 Hybrid Hash Join

 M partitions, store first one fully, M-1 with single-block

 Partitioning Phase completely joins first partition
 Probing Phase applied to M-1 partitions

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 2550 / Spring 2006

Processing of Complex Queries

 Query is translated into a sequence of relational
operators

 Q: Is single-operator-at-a-time appropriate?
 A: NO. Why?
 A: We would need temporary relations (and extra disk space)

  to store intermediate results

 What is the alternative?
 Combine operators (and their execution) into a sequence
 Pipelining or Stream-based Processing

Alexandros Labrinidis, Univ. of Pittsburgh 19 CS 2550 / Spring 2006

Example of Query Tree

 Π  P.pnumber, P.dnum, E.last, E.address, E.dob
(((σ P.location = “Pgh” (P)) join dnum=dnumber (D) join mgrssn=ssn(E))

P

D

E

σ P.location = “Pgh”

Join P.dnum=D.dnumber

Join D.ngrssn=E.ssn

Π  P.pnumber, P.dnum, E.last, E.address, E.dob

Alexandros Labrinidis, Univ. of Pittsburgh 20 CS 2550 / Spring 2006

Example of Query Tree – 2nd version

 Select P.PNUMBER, P.DNUM, E.LAST, E.ADDRESS, E.DOB
From   Project as P, Department as D, Employee as E
Where  P.DNUM = D.DNUMBER and D.MGRSSN = E.SSN and
       P.LOCATION=‘PGH’

P D
E

σ P.location = “Pgh” AND P.dnum=D.dnumber AND D.ngrssn=E.ssn

Π  P.pnumber, P.dnum, E.last, E.address, E.dob

x

x



6

Alexandros Labrinidis, Univ. of Pittsburgh 21 CS 2550 / Spring 2006

Heuristic Optimization of Query Trees

 Get initial query tree
 Apply CARTESIAN PRODUCT of relations in FROM
 Selection and Join conditions of WHERE is applied

 This is very inefficient. Why?
 Cartesian product causes “explosion” in number of tuples

 How to avoid this?
 Identify Joins
 Push selections down the tree (reduce number of tuples)
 Push project operations down the tree (reduce # of attributes)

Alexandros Labrinidis, Univ. of Pittsburgh 22 CS 2550 / Spring 2006

General Transformation Rules - 1

 Cascade of σ
 σc1 AND c2 AND … AND Cn (R) = σc1 (σc2 ( … (σcn (R)) … ))

 Commutativity of σ
 σc1 ( σc2 (R)) = σc2 ( σc1 (R))

 Cascade of Π
 Πlist1 (Πlist2 (… (ΠlistN (R)) … )) = Πlist1 (R)

 Commuting σ with Π

 ΠA1, A2, …, An (σc(R))  =  σc (ΠA1, A2, …, An (R))

Alexandros Labrinidis, Univ. of Pittsburgh 23 CS 2550 / Spring 2006

General Transformation Rules - 2

 Commutativity of join and cartesian product
 R join S = S join R
 R x S = S x R

 Note: order of attributes will not be the same

 Commuting σ with join (or cartesian product)

 σc (R join S) = (σc (R) ) join S

 If c = c1 AND c2, with c1 referring to R, c2 referring to S:

 σc (R join S) = (σc1 (R)) join (σc2 (S))

 Same rules apply for cartesian product

Alexandros Labrinidis, Univ. of Pittsburgh 24 CS 2550 / Spring 2006

General Transformation Rules - 3

 Commuting Π with join or cartesian product
 Project list L = {A1, A2, …, An, B1, B2, …, Bm)
 Suppose A1, A2, …, An are attributes of relation R, and

that B1, B2, …, Bm are attributes of relation S
 ΠL (R joinc S) = (ΠA1, A2, …, An (R)) joinc (ΠB1, B2, …, Bm (S))

 Note: c must only involve attributes in L
 What if c contains additional attributes?

 Commutativity of set operations:
 Union?
 Intersection?
 Set difference?



7

Alexandros Labrinidis, Univ. of Pittsburgh 25 CS 2550 / Spring 2006

General Transformation Rules - 4

 Associativity of join, x, U, I
 (R * S) * T = R * (S * T)

 where * can be any of  join, x, U, I

 Commuting σ with set operations

 σc (R # S) = (σc (R)) # (σc (S))

 where # can be any of  –, U, I

 Commuting of P operation:
 ΠL (R U S) = (ΠL (R)) U (ΠL (S))

Alexandros Labrinidis, Univ. of Pittsburgh 26 CS 2550 / Spring 2006

General Transformation Rules - 5

 Converting a (σ, x) sequence into a join operation
 If c corresponds to a join condition, then

 σc (R x S) = R joinc S

 Other transformations:
 Any boolean transformation can still be applied, e.g.:

 not (C1 and C2) = (not C1) or (not C2)
 not (C1 or C2) = (not C1) and (not C2)

Alexandros Labrinidis, Univ. of Pittsburgh 27 CS 2550 / Spring 2006

Outline of algebraic optimization

 Break up selections (with conjunctive conditions) into
a cascade of selection operators

 Push selection operators as far down in the tree as
possible

 Rearrange leaf nodes to:
 Execute first the most restrictive select operators

 What is restrictive? (Fewest tuples or Smallest size)
 Make sure we don’t have cartesian products

 Convert cartesian products into joins
 Move projections as far down as possible
 Identify subtrees that represent groups of operations

which can be executed by single algorithm

Alexandros Labrinidis, Univ. of Pittsburgh 28 CS 2550 / Spring 2006

Cost-based query optimization

 Compiled queries VS interpreted queries

 Cost-based query optimization
 Full-scale optimization, taking costs & selectivities into account
 Usually happens only for compiled queries

 Costs:
 Access cost to secondary storage
 Storage cost (for intermediate results)
 Computation cost
 Memory usage cost
 Communication cost (data/query shippping)



8

Alexandros Labrinidis, Univ. of Pittsburgh 29 CS 2550 / Spring 2006

How to estimate costs?

 How can we determine costs without running the query?
 Cost model
 Sizes (record, block, …)
 Selectivities
 Number of distinct values

 Histograms


