## CS 2550 / Spring 2006

Principles of Database Systems

08 - Query processing and optimization

Alexandros Labrinidis University of Pittsburgh

## Query Processing: Selections

- 1) Convert to relational algebra
select last, first
from employee
where salary>25000;
$\rightarrow \Pi_{\text {last, first }}\left(\sigma_{\text {salary }>25000}\right.$ (employee))
- 2) Choose an implementation
- Factors?
- Index Type
- Query Type
- Statistics

- A1: linear search
. Full scan
- A2: binary search
- Assume file is ordered on attribute
- A3: using primary index (or hash key) - Equality on key attribute
- A4: using primary/clustering index - multiple records
- Equality on non-key attribute
- A5: using secondary index
- Most general method - key/non-key attribute

4
CS 2550 / Spring 2006

## Implementations for Selection - II

- A6: primary index, comparison
- A7: secondary index, comparison


## Example Selection Queries

$\sigma_{\text {salary }>25000}(\mathrm{emp})$
$\sigma_{s s n=123456789}$ (emp)
$\sigma_{\text {dept_number }>5}$ (dept)
( $\sigma_{\text {dnum=6 }}$ (emp)
$\sigma_{\text {sex }={ }^{\prime} m^{\prime}}(\mathrm{emp})$
$\sigma_{\text {dnum }}=6$ AND salary $>25000$ AND sex=' $f^{\prime}$ (emp)
$\sigma_{\text {salary }}>25000$ AND salary<35000 (emp)

## Implementations for Selection III

- How to handle conjunction (AND) / disjunction (OR)?
- A8: Conjunctive selection using individual index
- Check simple condition first, if it has index
- A9: Conjunctive selection using composite index
- Composite on both attributes must exist
- A10: Conjunctive selection by intersection of record ptrs
- Evaluate simple conditions independently
- Produce intersection of lists of RIDs
- A11: Disjunctive selection by union of record ptrs

[^0]6
CS 2550/Spring 2006

## How to choose?

- Index Type
- What indexes are available for the given relations?
- Query Type
- Do we have range query, point query, conjunction?
- Statistics
- Selectivity
- Examples:
- $\sigma_{\text {sex= }{ }^{\prime} m^{\prime}}$ (emp)
- $\sigma_{\text {ssn='123456789' }}$ (emp)

Alexandros Labrinidis, Univ. of Pittsburgh
${ }^{8}$
CS 2550 / Spring 2006

## Query Processing: Joins

- J1: Nested-loop join
- J2: Single-loop join
- J3: Sort-merge join
- J4: Hash-join


## J2: Single-loop join

Join relations $R$ and $S$

- $A$ is the common attribute in $R, B$ is the common attribute in $S$
- Must use an access structure to retrieve the matching records
- Only works if an index (hash) key exists for one of the two join attributes (A or B), say B
- For each record $t$ in $R$
- Locate tuples $s$ from $S$, that satisfy $s[B]=t[A]$


## J1: Nested-loop join

- Join relations R and S
- A is the common attribute in $R, B$ is the common attribute in $S$
- For each record t in R (=outer loop)
- For each record s in S (=inner loop)
- Test if $\mathrm{t}[\mathrm{A}]=\mathrm{s}[\mathrm{B}]$
- In practice, we are accessing an entire disk block at a time rather than a record at a time.
- Is there any difference which relation will be inner/outer?

10
CS 2550 / Spring 2006

J3: Sort-merge join

- Join relations $R$ and $S$
- $A$ is the common attribute in $R, B$ is the common attribute in $S$
- IF relations R and S are physically sorted (ordered) by the value of the join attributes
- we simply have to scan the relations
- produce match or advance pointer
- Q: what happens if the relations are not sorted?


## J4: Hash-join

- Join relations R and S
- A is the common attribute in $R, B$ is the common attribute in $S$

1) Single pass through relation with fewer records (R)

- Partitioning phase (into hash buckets)
- 2) Single pass through other relation (S)
- Probing phase (use hash to find matching records of R)
- Q: Will this work if R does not fit in memory?


## Partition Hash Join

- Join relations $R$ and $S$
- Partitioning Phase
- Partition hash function
- R into M partitions: $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{M}}$
- $S$ into $M$ partitions: $S_{1}, S_{2}, \ldots, S_{M}$
- IDEA: $\mathrm{R}_{\mathrm{i}}$ only needs to be joined with $\mathrm{S}_{\mathrm{i}}$
- Probing Phase
- Perform M iterations
- Join partitions $\mathrm{R}_{\mathrm{i}}$ and S
- Can use nested-loop join or hash-join
. If hash-join, must use different hash function. WHY?


## Query Processing: Joins

- J1: Nested-loop join
- J2: Single-loop join
- J3: Sort-merge join
- J4: Hash-join
- Partition Hash Join
- Hybrid Hash Join


## Partition Hash Join - Discussion

- Q: What is the cost?
- A: How many times each block is read/written?
- Partitioning Phase: R: read once, write once

S: read once, write once

- Probing Phase

R: read once
write results once

- Total cost $=3^{*}\left(b_{R}+b_{S}\right)+b_{\text {results }}$
- Q: What is the main difficulty of the algorithm?
- A: What is the partitioning phase relying on?
- Hash function is uniform!
- i.e. partition sizes are nearly equal in size


## Hybrid Hash Join

- Variation of Partition Hash Join
- Main idea:
- Get a "free-ride" for joining the first partition during first pass

Differences.

- Partition Hash Join:
- M partitions, single-block in memory for each one
- Hybrid Hash Join
- M partitions, store first one fully, $\mathrm{M}-1$ with single-block
- Partitioning Phase completely joins first partition
- Probing Phase applied to M-1 partitions


## Example of Query Tree



- П P.pnumber, P.dnum, E.last, E.address, E.dob $\left(\left(\left(\sigma_{\text {P.location }}=\right.\right.\right.$ "Pgh" $\left.(P)\right)$ join dnum=dnumber $(D)$ join $\left._{\text {mgrssn=ssn }}(E)\right)$

[^1]
## Processing of Complex Queries

- Query is translated into a sequence of relational operators
- Q: Is single-operator-at-a-time appropriate?
- A: NO. Why?
- A: We would need temporary relations (and extra disk space) to store intermediate results
- What is the alternative?
- Combine operators (and their execution) into a sequence
. Pipelining or Stream-based Processing

- Select P.PNUMBER, P.DNUM, E.LAST, E.ADDRESS, E.DOB From Project as P, Department as D, Employee as E Where P.DNUM = D.DNUMBER and D.MGRSSN = E.SSN and LOCATION=' PG

$$
\text { Alexandros Labrindis, Univ, of Pittsburgh } 20
$$

## Heuristic Optimization of Query Trees

- Get initial query tree
- Apply CARTESIAN PRODUCT of relations in FROM
- Selection and Join conditions of WHERE is applied
- This is very inefficient. Why?
- Cartesian product causes "explosion" in number of tuples
- How to avoid this?
- Identify Joins
- Push selections down the tree (reduce number of tuples)
- Push project operations down the tree (reduce \# of attributes)


## General Transformation Rules - 2

- Commutativity of join and cartesian product
- $R$ join $S=S$ join $R$
- $R \times S=S \times R$
- Note: order of attributes will not be the same
- Commuting $\sigma$ with join (or cartesian product)
- $\sigma_{c}(R$ join $S)=\left(\sigma_{c}(R)\right)$ join $S$
- If $c=c_{1}$ AND $c_{2}$, with $c_{1}$ referring to $R, c_{2}$ referring to $S$

$$
\text { - } \sigma_{c}(R \text { join } S)=\left(\sigma_{c 1}(R)\right) \text { join }\left(\sigma_{c 2}(S)\right)
$$

- Same rules apply for cartesian product

General Transformation Rules - 1

- Cascade of $\sigma$
- $\sigma_{\mathrm{c} 1 \text { AND C2 AND } \ldots \text { and } \mathrm{Cn}}(\mathrm{R})=\sigma_{\mathrm{c} 1}\left(\sigma_{\mathrm{c} 2}\left(\ldots\left(\sigma_{\mathrm{cn}}(\mathrm{R})\right) \ldots\right)\right)$
- Commutativity of $\sigma$
- $\sigma_{\mathrm{c} 1}\left(\sigma_{\mathrm{c} 2}(\mathrm{R})\right)=\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(\mathrm{R})\right)$
- Cascade of $\Pi$
- $\Pi_{\text {list1 }}\left(\Pi_{\text {list2 }}\left(\ldots\left(\Pi_{\text {listN }}(R)\right) \ldots\right)\right)=\Pi_{\text {list1 }}(R)$
- Commuting $\sigma$ with $\Pi$
- $\Pi_{A 1, A 2}, \ldots, A_{n}\left(\sigma_{c}(R)\right)=\sigma_{c}\left(\Pi_{A 1, A 2}, \ldots, A n(R)\right)$
- Commuting $\Pi$ with join or cartesian product
- Project list $L=\left\{A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2}, \ldots, B_{m}\right.$ )
- Suppose $A_{1}, A_{2}, \ldots, A_{n}$ are attributes of relation $R$, and that $B_{1}, B_{2}, \ldots, B_{m}$ are attributes of relation $S$
- $\Pi_{L}\left(R\right.$ join $\left.{ }_{c} S\right)=\left(\Pi_{A 1, A 2, \ldots, A n}(R)\right)$ join $_{c}\left(\Pi_{B 1, B 2, \ldots, B m}(S)\right)$

Note: c must only involve attributes in L

- What if c contains additional attributes?
- Commutativity of set operations:
- Union?
- Intersection?
- Set difference?

Alexandros Labrinidis, Univ. of Pittsburgh
24

## General Transformation Rules - 4

- Associativity of join, $x, U, \cap$
- $(\mathrm{R} * \mathrm{~S}) * \mathrm{~T}=\mathrm{R} *(\mathrm{~S} * \mathrm{~T})$
- where * can be any of join, $x, \cup, \cap$
- Commuting $\sigma$ with set operations
- $\sigma_{\mathrm{c}}(\mathrm{R} \# \mathrm{~S})=\left(\sigma_{\mathrm{c}}(\mathrm{R})\right)$ \# ( $\left.\sigma_{\mathrm{c}}(\mathrm{S})\right)$
- where \# can be any of $-, \cup, \cap$
- Commuting of $P$ operation:
- $\Pi_{\mathrm{L}}(\mathrm{R} \cup \mathrm{S})=\left(\Pi_{\mathrm{L}}(\mathrm{R})\right) \cup\left(\Pi_{\mathrm{L}}(\mathrm{S})\right)$


## Outline of algebraic optimization

Break up selections (with conjunctive conditions) into a cascade of selection operators
( Push selection operators as far down in the tree as possible

- Rearrange leaf nodes to:
- Execute first the most restrictive select operators
- What is restrictive? (Fewest tuples or Smallest size)
- Make sure we don't have cartesian products
- Convert cartesian products into joins
- Move projections as far down as possible

8* Identify subtrees that represent groups of operations which can be executed by single algorithm

## General Transformation Rules - 5

- Converting a ( $\sigma, x$ ) sequence into a join operation
- If c corresponds to a join condition, then
- $\sigma_{c}(R \times S)=R j o i n_{c} S$
- Other transformations:
- Any boolean transformation can still be applied, e.g.:
- not $\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{2}\right)=\left(\operatorname{not} \mathrm{C}_{1}\right)$ or $\left(\operatorname{not} \mathrm{C}_{2}\right)$
- $\operatorname{not}\left(\mathrm{C}_{1}\right.$ or $\left.\mathrm{C}_{2}\right)=\left(\operatorname{not} \mathrm{C}_{1}\right)$ and $\left(\operatorname{not} \mathrm{C}_{2}\right)$

Alexandros Labinididis, Univ. of Pittsburgh

## Cost-based query optimization

- Compiled queries VS interpreted queries
- Cost-based query optimization
- Full-scale optimization, taking costs \& selectivities into account
- Usually happens only for compiled queries
- Costs:
- Access cost to secondary storage
- Storage cost (for intermediate results)
- Computation cost
- Memory usage cost
- Communication cost (data/query shippping)

[^2]28
CS 2550 / Spring 2006

| How to estimate costs? |  |  |
| :---: | :---: | :---: |
| - How can we d <br> - Cost model <br> - Sizes (record, <br> - Selectivities <br> - Number of dis <br> - Histograms | $\text { ts } W$ | the query? |
| Alexandros Labinidids, Univ. of Pittsburgh | 29 | CS 2550 / Spring 2006 |


[^0]:    Alexandros Labinididis, Univ. of Pittsburgh

[^1]:    Alexandros Labrinidis, Univ. of Pittsburgh
    19
    CS 2550 / Spring 2006

[^2]:    Alexandros Labrinidis, Univ. of Pittsburgh

