
1

CS 2550 / Spring 2006
Principles of Database Systems

Alexandros Labrinidis
University of Pittsburgh

05 – SQL Programming

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 2550 / Spring 2006

How to program applications

 Using existing languages:
 Embed SQL into “Host” language

 ESQL, SQLJ

 Use a library of functions
 JDBC

 Design a new language

 Problem: impedance mismatch
 Data types
 Accessing results in table form

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 2550 / Spring 2006

Roadmap

 Embedded SQL

 Dynamic SQL

 ODBC

 JDBC

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 2550 / Spring 2006

SQL is not enough

 SQL does not provide the full functionality of general-
purpose programming languages
 less powerful
 on purpose: SQL can be automatically optimized and executed

efficiently

 SQL cannot perform “non-declarative” actions:
 cannot interact with user
 cannot print results
 cannot manage a Graphical User Interface

2

Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 2550 / Spring 2006

Embedded SQL

 Solution:
 Bind together SQL with general purpose programming language

 Programming language = host language
 SQL included within host lang. = embedded SQL (ESQL)

 How:
 include embedded SQL within the host language
 run pre-processor before compiling program

 Format:
 EXEC SQL <embedded SQL statement> END-EXEC

Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 2550 / Spring 2006

How ESQL/host lang. communicate

 Variables from host language can be included in ESQL
 Variable X is included within SQL as :X

 Query results are retrieved one tuple at a time:
 Open()
 while (Fetch())

 perform action on each result tuple
 Close()

 Must check return codes for errors

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 2550 / Spring 2006

ESQL – Cursors

 From within a host language, find the names and cities of customers
with more than the X dollars in account

 Specify the query in SQL and declare a cursor for it
 A cursor is a “pointer” to a specific tuple within a set of results

EXEC SQL
declare c cursor for
select customer_name, customer_city
from depositor, customer, account
where depositor.customer_name = customer.customer_name
 and depositor account_number = account.account_number

 and account.balance > :X
END-EXEC

Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 2550 / Spring 2006

ESQL – Execution

 The open statement causes the query to be evaluated
EXEC SQL open c END-EXEC

 The fetch statement causes the values of one tuple in the query result to be placed
on host language variables.

EXEC SQL fetch c into :cust_name, :cust_city END-EXEC
Repeated calls to fetch get successive tuples in the query result

 A variable called SQLSTATE in the SQL communication area (SQLCA) gets set to
‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the temporary relation
that holds the result of the query.

EXEC SQL close c END-EXEC

3

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 2550 / Spring 2006

ESQL – Updates

 Can update tuples fetched by cursor by declaring that the cursor is for
update

 declare c cursor for
 select *
 from account
 where branch-name = ‘Perryridge’
 for update

 Loop over results using fetch

 To update tuple at the current location of cursor
 update account

 set balance = balance + 100
 where current of c

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 2550 / Spring 2006

Roadmap

 Embedded SQL

 Dynamic SQL

 ODBC

 JDBC

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 2550 / Spring 2006

Dynamic SQL

 Allow programs to construct and submit SQL queries at run-time
 Embedded SQL = static SQL, queries must be defined before

 preprocessing/compiling

 Example of dynamic SQL from within a C program.

char * sqlprog = “update account
 set balance = balance * 1.05

 where account_number = ?”
EXEC SQL prepare dynprog from :sqlprog;
char account [10] = “A-101”;
EXEC SQL execute dynprog using :account;

 The dynamic SQL program contains a ?, which is a place holder for a value
that is provided when the SQL program is executed.

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 2550 / Spring 2006

Dynamic SQL – Execution

 Well-defined Application Program Interface (API)

 General structure of Dynamic SQL:
 Connect to DB server (new session)
 Execute statements

 Prepare
 Open/fetch/close
 Updates

 Commit/Rollback
 Close session

4

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 2550 / Spring 2006

Roadmap

 Embedded SQL

 Dynamic SQL

 ODBC

 JDBC

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 2550 / Spring 2006

ODBC

 Open DataBase Connectivity (ODBC) standard
 standard for application program to communicate with a

database server.
 application program interface (API) to

 open a connection with a database,
 send queries and updates,
 get back results.

 Applications such as GUI, spreadsheets, etc. can use
ODBC

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 2550 / Spring 2006

ODBC (cont.)

 Each database system supporting ODBC provides a "driver" library that
must be linked with the client program

 When client program makes an ODBC API call, the code in the library
communicates with the server to carry out the requested action, and fetch
results

 ODBC program first allocates an SQL environment, then a database
connection handle

 Opens database connection using SQLConnect(). Parameters for
SQLConnect:

 the connection handle,
 the server to which to connect
 the user identifier,
 the password

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 2550 / Spring 2006

Roadmap

 Embedded SQL

 Dynamic SQL

 ODBC

 JDBC

5

Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 2550 / Spring 2006

JDBC

 JDBC is a Java API for communicating with database systems supporting
SQL

 JDBC supports a variety of features for querying and updating data, and for
retrieving query results

 JDBC also supports metadata retrieval
 query about relations present in the database
 query the names and types of relation attributes

 Model for communicating with the database:
 Open a connection
 Create a “statement” object
 Execute queries using the Statement object to

send queries and fetch results
 Exception mechanism to handle errors this is different than ODBC

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 2550 / Spring 2006

JDBC Code Example

public static void JDBCexample(String dbid, String userid, String passwd)
 {

 try {
 Class.forName ("oracle.jdbc.driver.OracleDriver");
 Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@aura.bell-labs.com:2000:bankdb",
userid, passwd);

 Statement stmt = conn.createStatement();
 … Do Actual Work ….
 stmt.close();
 conn.close();
 }
 catch (SQLException sqle) {
 System.out.println("SQLException : " + sqle);
 }

 }

Alexandros Labrinidis, Univ. of Pittsburgh 19 CS 2550 / Spring 2006

JDBC Code – Main Body

 Update database
try {
 stmt.executeUpdate("insert into account values

 ('A-9732', 'Perryridge', 1200)");
} catch (SQLException sqle) {
 System.out.println("Could not insert tuple. " + sqle);
}

 Execute query and fetch and print results
ResultSet rset = stmt.executeQuery("select branch_name, avg(balance)

 from account
 group by branch_name");

while (rset.next()) {
System.out.println(

 rset.getString("branch_name") + " " + rset.getFloat(2));
}

Alexandros Labrinidis, Univ. of Pittsburgh 20 CS 2550 / Spring 2006

JDBC Code – II

 Getting result fields:
 rs.getString(“branchname”) and rs.getString(1) equivalent if

branchname is the first argument of select result.

 Dealing with Null values
int a = rs.getInt(“a”);
if (rs.wasNull()) Systems.out.println(“Got null value”);

 Correct Quotation
 “insert into account values (‘A-9732’, …)”

6

Alexandros Labrinidis, Univ. of Pittsburgh 21 CS 2550 / Spring 2006

JDBC – Prepared Statements

 Prepared statement allows queries to be compiled and
executed multiple times with different arguments

PreparedStatement pStmt = conn.prepareStatement(
 “insert into accoun values(?,?,?)”);

 pStmt.setString(1, "A-9732");
 pStmt.setString(2, "Perryridge");
 pStmt.setInt(3, 1200);
 pStmt.executeUpdate();

 pStmt.setString(1, "A-9733");
 pStmt.executeUpdate();

