
1

CS 2550 / Spring 2006
Principles of Database Systems

Alexandros Labrinidis
University of Pittsburgh

04 – Storage

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 2550 / Spring 2006

Roadmap

 Overview of Physical Storage Media
 Magnetic Disks
 Introduction to RAID
 File Organization
 Organization of Records in Files

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 2550 / Spring 2006

Physical Storage Media Taxonomy

 Speed with which data can be accessed
 Cost per unit of data
 Reliability

 data loss on power failure or system crash
 physical failure of the storage device

 Can differentiate storage into:
 volatile storage: loses contents when power is switched off
 non-volatile storage:

 Contents persist even when power is switched off.
 Includes secondary and tertiary storage, as well as batter-

backed up main-memory.

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 2550 / Spring 2006

Physical Storage Media

 Cache – fastest and most costly form of storage;
volatile; managed by the computer system hardware.

 Main memory:
 fast access (10s to 100s of nanoseconds; 1 nanosecond = 10–9

seconds)
 generally too small (or too expensive) to store the entire

database
 capacities of up to a few Gigabytes widely used currently
 Capacities have gone up and per-byte costs have decreased

steadily and rapidly (roughly factor of 2 every 2 to 3 years)
 Volatile — contents of main memory are usually lost if a power

failure or system crash occurs.

2

Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 2550 / Spring 2006

Physical Storage Media (Cont.)

 Flash memory
 Data survives power failure
 Data can be written at a location only once, but location can be

erased and written to again
 Can support only a limited number of write/erase cycles.
 Erasing of memory has to be done to an entire bank of

memory
 Reads are roughly as fast as main memory
 But writes are slow (few microseconds), erase is slower
 Cost per unit of storage roughly similar to main memory
 Widely used in embedded devices such as digital cameras
 also known as EEPROM (Electrically Erasable Programmable

Read-Only Memory)

Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 2550 / Spring 2006

Magnetic Disks

 Data is stored on spinning disk, and read/written magnetically
 Primary medium for the long-term storage of data; typically stores

entire database.
 Data must be moved from disk to main memory for access, and written

back for storage
 Much slower access than main memory (more on this later)

 direct-access – possible to read data on disk in any order, unlike
magnetic tape

 Hard disks vs floppy disks
 Capacities range up to roughly 100 GB currently

 Much larger capacity and cost/byte than main memory/flash
memory

 Growing constantly and rapidly with technology improvements
(factor of 2 to 3 every 2 years)

 Survives power failures and system crashes
 disk failure can destroy data, but is very rare

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 2550 / Spring 2006

Physical Storage Media (Cont.)
 Optical storage

 non-volatile, data is read optically from a spinning disk using
a laser

 CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular
forms

 Write-one, read-many (WORM) optical disks used for archival
storage (CD-R and DVD-R)

 Multiple write versions also available (CD-RW, DVD-RW, and
DVD-RAM)

 Reads and writes are slower than with magnetic disk
 Juke-box systems, with large numbers of removable disks,

a few drives, and a mechanism for automatic
loading/unloading of disks available for storing large volumes
of data

Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 2550 / Spring 2006

Physical Storage Media (Cont.)

 Tape storage
 non-volatile, used primarily for backup (to recover from disk

failure), and for archival data
 sequential-access – much slower than disk
 very high capacity (40 to 300 GB tapes available)
 tape can be removed from drive ⇒ storage costs much cheaper

than disk, but drives are expensive
 Tape jukeboxes available for storing massive amounts of data

 hundreds of terabytes (1 terabyte = 109 bytes) to even a
petabyte (1 petabyte = 1012 bytes)

3

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 2550 / Spring 2006

Storage Hierarchy

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 2550 / Spring 2006

Storage Hierarchy (Cont.)

 primary storage: Fastest media but volatile (cache,
main memory).

 secondary storage: next level in hierarchy, non-
volatile, moderately fast access time
 also called on-line storage
 E.g. flash memory, magnetic disks

 tertiary storage: lowest level in hierarchy, non-volatile,
slow access time
 also called off-line storage
 E.g. magnetic tape, optical storage

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 2550 / Spring 2006

Magnetic Hard Disk Mechanism

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 2550 / Spring 2006

Magnetic Disks

 Read-write head
 Positioned very close to the platter surface (almost touching it)
 Reads or writes magnetically encoded information.

 Surface of platter divided into circular tracks
 Over 16,000 tracks per platter on typical hard disks

 Each track is divided into sectors.
 A sector is the smallest unit of data that can be read or written.
 Sector size typically 512 bytes
 Typical sectors per track: 200 (on inner tracks) to 400 (on outer tracks)

 To read/write a sector
 disk arm swings to position head on right track
 platter spins continually; data is read/written as sector passes under

head

4

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 2550 / Spring 2006

Magnetic Disks (Cont.)
 Earlier generation disks were susceptible to head-crashes

 Surface of earlier generation disks had metal-oxide coatings which would
disintegrate on head crash and damage all data on disk

 Current generation disks are less susceptible to such disastrous failures,
although individual sectors may get corrupted

 Disk controller – interfaces between the computer system and the disk
drive hardware.

 accepts high-level commands to read or write a sector
 initiates actions such as moving the disk arm to the right track and actually

reading or writing the data
 Computes and attaches checksums to each sector to verify that data is read

back correctly
 If data is corrupted, with very high probability stored checksum won’t

match recomputed checksum

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 2550 / Spring 2006

Performance Measures of Disks

 Cost

 Size

 Access Time

 Data Transfer Rate

 Mean time to failure

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 2550 / Spring 2006

Performance Measures of Disks

 Access time – the time it takes from when a read or
write request is issued to when data transfer begins.
Consists of:
 Seek time – time it takes to reposition the arm over the correct

track.
 Average seek time is 1/2 the worst case seek time.

 Would be 1/3 if all tracks had the same number of sectors, and
we ignore the time to start and stop arm movement

 4 to 10 milliseconds on typical disks
 Rotational latency – time it takes for the sector to be accessed

to appear under the head.
 Average latency is 1/2 of the worst case latency.
 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 2550 / Spring 2006

Performance Measures of Disks (II)

 Data-transfer rate – the rate at which data can be
retrieved from or stored to the disk.
 4 to 8 MB per second is typical
 Multiple disks may share a controller, so rate that controller can

handle is also important
 E.g. ATA-5: 66 MB/second, SCSI-3: 40 MB/s
 Fiber Channel: 256 MB/s

5

Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 2550 / Spring 2006

Performance Measures of Disks (III)

 Mean time to failure (MTTF) – the average time the
disk is expected to run continuously without any failure.
 Typically 3 to 5 years
 Probability of failure of new disks is quite low, corresponding to a

“theoretical MTTF” of 30,000 to 1,200,000 hours for a new disk
 E.g., an MTTF of 1,200,000 hours for a new disk means that

given 1000 relatively new disks, on an average one will fail
every 1200 hours

 MTTF decreases as disk ages

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 2550 / Spring 2006

Roadmap

 Overview of Physical Storage Media
 Magnetic Disks
 Introduction to RAID
 File Organization
 Organization of Records in Files

Alexandros Labrinidis, Univ. of Pittsburgh 19 CS 2550 / Spring 2006

RAID
 RAID: Redundant Arrays of Independent Disks

 disk organization techniques that manage a large numbers of disks, providing a
view of a single disk of

 high capacity and high speed by using multiple disks in parallel, and
 high reliability by storing data redundantly, so that data can be recovered

even if a disk fails

 The chance that some disk out of a set of N disks will fail is much higher
than the chance that a specific single disk will fail.

 E.g., a system with 100 disks, each with MTTF of 100,000 hours (approx. 11
years), will have a system MTTF of 1000 hours (approx. 41 days)

 Techniques for using redundancy to avoid data loss are critical with large
numbers of disks

Alexandros Labrinidis, Univ. of Pittsburgh 20 CS 2550 / Spring 2006

Reliability through Redundancy

 Redundancy – store extra information that can be used
to rebuild information lost in a disk failure

 E.g., Mirroring (or shadowing)
 Duplicate every disk. Logical disk consists of two physical disks.
 Every write is carried out on both disks

 Reads can take place from either disk
 If one disk in a pair fails, data still available in the other

 Data loss would occur only if a disk fails, and its mirror disk
also fails before the system is repaired

 Probability of combined event is very small
 Except for dependent failure modes such as fire or building

collapse or electrical power surges

6

Alexandros Labrinidis, Univ. of Pittsburgh 21 CS 2550 / Spring 2006

Performance through Parallelism

 Two main goals of parallelism in a disk system:
1. Load balance multiple small accesses to increase throughput
2. Parallelize large accesses to reduce response time.

 Improve transfer rate by striping data across multiple disks.
 Bit-level striping – split the bits of each byte across multiple disks

 In an array of eight disks, write bit i of each byte to disk i.
 Each access can read data at eight times the rate of a single disk.
 But seek/access time worse than for a single disk

 Bit level striping is not used much any more

 Block-level striping – with n disks, block i of a file goes to disk (i mod n)
+ 1

 Requests for different blocks can run in parallel if the blocks reside on different
disks

 A request for a long sequence of blocks can utilize all disks in parallel

Alexandros Labrinidis, Univ. of Pittsburgh 22 CS 2550 / Spring 2006

Roadmap

 Overview of Physical Storage Media
 Magnetic Disks
 Introduction to RAID
 File Organization
 Organization of Records in Files

Alexandros Labrinidis, Univ. of Pittsburgh 23 CS 2550 / Spring 2006

Data Elements

 Field: a database attribute (sequence of bytes)
 Record: sequence of fields (that describe an entity)
 Block: sequence of records

 Unspanned (no record can span two blocks)
 Spanned

 File: sequence of blocks

block header record1 record2 … record3
unspanned

block header record1 record2 … record3 block header record4
record4spanned

Alexandros Labrinidis, Univ. of Pittsburgh 24 CS 2550 / Spring 2006

Fixed-Length Records

 Fields are stored in sequence as the
corresponding attributes are declared

 DATE: 10-char string YYYY-MM-DD
Fixed-length character string char(10)
 example: 2002-09-15

CREATE TABLE MovieStar (
 name CHAR(30),
 address CHAR(120),
 gender CHAR(1),
 birthdate DATE
)

150
name address

birthdate

gender

0 30

151

7

Alexandros Labrinidis, Univ. of Pittsburgh 25 CS 2550 / Spring 2006

Fixed-Length Records - Alignment

 Each record within a block starts at a byte
that is multiple of 4

 Each field within a record starts at a byte
off-set from the beginning of the record
that is multiple of 4

CREATE TABLE MovieStar (
 name CHAR(30),
 address CHAR(120),
 gender CHAR(1),
 birthdate DATE
)

152
name address

birthdate

gender

0 32

156

Alexandros Labrinidis, Univ. of Pittsburgh 26 CS 2550 / Spring 2006

File Organization

 Fixed-length records

 10 + 22 + 8 = 40 bytes

CREATE TABLE deposit (
 account_number CHAR(10),
 branch_name CHAR(22),
 balance REAL
)

250DowntownA-403Record 7

600OaklandA-257Record 6

340WaterfrontA-110Record 5

900ShadysideA-217Record 4

500Squirrel HillA-222Record 3

700DowntownA-101Record 2

350ShadysideA-305Record 1

400OaklandA-102Record 0

Alexandros Labrinidis, Univ. of Pittsburgh 27 CS 2550 / Spring 2006

move records up

File Organization – Updates I

250DowntownA-403Record 7

600OaklandA-257Record 6

340WaterfrontA-110Record 5

900ShadysideA-217Record 4

500Squirrel HillA-222Record 3

350ShadysideA-305Record 1

400OaklandA-102Record 0

remove Record 2 add Record 8

420OaklandA-354Record 8

250DowntownA-403Record 7

600OaklandA-257Record 6

340WaterfrontA-110Record 5

900ShadysideA-217Record 4

500Squirrel HillA-222Record 3

350ShadysideA-305Record 1

400OaklandA-102Record 0

250DowntownA-403Record 7

600OaklandA-257Record 6

340WaterfrontA-110Record 5

900ShadysideA-217Record 4

500Squirrel HillA-222Record 3

350ShadysideA-305Record 1

400OaklandA-102Record 0

Alexandros Labrinidis, Univ. of Pittsburgh 28 CS 2550 / Spring 2006

File Organization – Updates II

250DowntownA-403Record 7

600OaklandA-257Record 6

340WaterfrontA-110Record 5

900ShadysideA-217Record 4

500Squirrel HillA-222Record 3

420OaklandA-354Record 8

350ShadysideA-305Record 1

400OaklandA-102Record 0

250DowntownA-403Record 7

600OaklandA-257Record 6

340WaterfrontA-110Record 5

900ShadysideA-217Record 4

500Squirrel HillA-222Record 3

350ShadysideA-305Record 1

400OaklandA-102Record 0

remove Record 2 add Record 8

8

Alexandros Labrinidis, Univ. of Pittsburgh 29 CS 2550 / Spring 2006

File Organization – Free List

header

420OaklandA-354Record 8

250DowntownA-403Record 7

600OaklandA-257Record 6

340WaterfrontA-110Record 5

900ShadysideA-217Record 4

350ShadysideA-305Record 1

400OaklandA-102Record 0

Alexandros Labrinidis, Univ. of Pittsburgh 30 CS 2550 / Spring 2006

Variable-Length Attributes

 example: type VARCHAR(18)

 length + data:

 null-terminated:

 maximum length:

10 SIDINIRBAL

S IDINIRBAL

SIDINIRBAL

Alexandros Labrinidis, Univ. of Pittsburgh 31 CS 2550 / Spring 2006

Fixed-length Records

 Fixed-length records cannot span separate blocks
 Variable-length fields are allocated their maximum length
 Pros:

 fixed field length simplifies insertion, deletion etc
 no space is needed for storing extra administrative info

for the fields within record
 equally fast access to all fields
 every offset is pre-compiled and stored in DB Catalog

 Cons:
 block internal fragmentation due to unspanned organization
 record internal fragmentation (max specified length for every field)
 more disk accesses for reading a given number of records

Alexandros Labrinidis, Univ. of Pittsburgh 32 CS 2550 / Spring 2006

Variable-Length Records

 Typical in database systems because of:

 Storage of multiple record types in a file

 Variable-length attributes

 Record types that allow repeating fields

9

Alexandros Labrinidis, Univ. of Pittsburgh 33 CS 2550 / Spring 2006

Variable-Length Records
Byte-String Implementation

 Attach a special end-of-record symbol () to the
end of each record

 Alternatively, store record length at beginning of
each record

 Disadvantages:
 Not easy to reuse space which was occupied

by a deleted record
 No space for record to grow longer (must move

record that needs to grow)

Alexandros Labrinidis, Univ. of Pittsburgh 34 CS 2550 / Spring 2006

Variable-Length Records
Byte-String Implementation Example

320

A-104

A-217

A-222

A-101

A-305

A-102

A-406

A-323

A-205

200

450

300

900ShadysideRecord 4

500Squirrel HillRecord 3

700DowntownRecord 2

350ShadysideRecord 1

400OaklandRecord 0

Alexandros Labrinidis, Univ. of Pittsburgh 35 CS 2550 / Spring 2006

Variable-Length Records
Preceding length field Implementation

 Variable-length field store their length at the beginning
 Trade-off between extra space and internal fragmentation

 Fields are stored in the order in which they are declared
 For fixed-length the offset is stored in the catalog
 For variable-length, the offset is computed from the heading

 Pros:
 No record internal fragmentation

 Cons:
 Access cost for a field is proportional to the distance from the beginning of the

record
 Null field (headers) must be there
 Records cannot be fragmented over separate blocks – small tuples

 Optimization: pre-compile and store the offset of all preceding fixed-
length fields in each variable-length field

Alexandros Labrinidis, Univ. of Pittsburgh 36 CS 2550 / Spring 2006

Variable-Length Records
Fixed-length Implementation

 Use one or more fixed-length records to represent
one variable-length record

 Reserved space – padding

 Linked list method

 Chained blocks via pointers
 Anchor block: first records of a chain
 Overflow block: subsequent records of a chain

10

Alexandros Labrinidis, Univ. of Pittsburgh 37 CS 2550 / Spring 2006

Variable-Length Records
Fixed-length Implementation Example – 1

 Reserved-space Method

320

A-104

A-217

A-222

A-101

A-305

A-102

A-406

A-323

A-205

200

450

300

900ShadysideRecord 4

500Squirrel HillRecord 3

700DowntownRecord 2

350ShadysideRecord 1

400OaklandRecord 0

Alexandros Labrinidis, Univ. of Pittsburgh 38 CS 2550 / Spring 2006

Variable-Length Records
Fixed-length Implementation Example – 2

 Linked-List Method

200A-406

300A-205

320A-104

450A-323

A-217

A-222

A-101

A-305

A-102

900ShadysideRecord 4

500Squirrel HillRecord 3

700DowntownRecord 2

350ShadysideRecord 1

400OaklandRecord 0

Alexandros Labrinidis, Univ. of Pittsburgh 39 CS 2550 / Spring 2006

Variable-Length Records
Fixed-length Implementation Example – 3

 Chained-Blocks Method

A-217

A-222

A-101

A-305

A-102

900ShadysideRecord 4

500Squirrel HillRecord 3

700DowntownRecord 2

350ShadysideRecord 1

400OaklandRecord 0

200A-406

300A-205

320A-104

450A-323

Anchor block

Overflow block

Alexandros Labrinidis, Univ. of Pittsburgh 40 CS 2550 / Spring 2006

 Each field is fully equipped with length indicator and internal id
 Pros:

 Simple and most flexible of all mechanisms
 no distinction between fixed and variable length fields.
 no assumption on the attribute ordering in the catalog.

 no need to store null.
 easy extension.
 no problem spanning records across blocks.
 supports vertical fragmentation for load balancing.

 Cons:
 No pre-compilation. Access to all fields is not equal.
 access cost for a field is proportional to its distance

from the beginning of the record.
 null-values require the whole record to be scanned

Variable-Length Records
Sequence of Self-Identifying Fields Implementation

11

Alexandros Labrinidis, Univ. of Pittsburgh 41 CS 2550 / Spring 2006

Variable-Length Records
Prefix Pointers to the Fields Implementation

 The pointer array serves as a rudimentary catalog for the record.
 it works like the fixed-length field/fixed-length record scheme but with computation

of the offset difference (no-precompilation).

 Cons: increase the size of records.

gender
sid name address birthdate

header index length

 A prefix array after the record heading, contains one pointer per field.
 the difference between two successive pointers is the length of the field in the

second one belongs to.

 Optimization: pointers are only kept for variable-length fields

Alexandros Labrinidis, Univ. of Pittsburgh 42 CS 2550 / Spring 2006

Variable-Length Records
Slotted-Page Implementation

 Slotted-page structure is industry standard

 records can move within the page

 records are allocated contiguously,
starting at the beginning of the block
(or starting at the beginning of the block)

 End of page: has pointers to records
(or start of page: has pointers to records)

 external pointers point only to the header

Alexandros Labrinidis, Univ. of Pittsburgh 43 CS 2550 / Spring 2006

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

•••

RH4

7658 Susan 52

•

1563

37Dan87916

43Leon25345

52Susan76584

20Jim15633

45John43222

30Jane12371

AgeNameSSNRID

R

 Records are stored sequentially
 Offsets to start of each record at end of page

Slotted Pages Example

Alexandros Labrinidis, Univ. of Pittsburgh 44 CS 2550 / Spring 2006

CACHE

MAIN MEMORY

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

•••

RH4

7658 52

•

1563

block 130Jane RH

52 2534 Leon block 4

Jim 20 RH4 block 3

45 RH3 1563 block 2

select name
from R
where age > 50

S-P push non-referenced data to the cache

2534 LeonSusan

Predicate Evaluation using S-P

12

Alexandros Labrinidis, Univ. of Pittsburgh 45 CS 2550 / Spring 2006

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

•••

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

• •••

S-P PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)
(by Natassa Ailamaki, CMU)

Alexandros Labrinidis, Univ. of Pittsburgh 46 CS 2550 / Spring 2006

CACHE

1563

PAGE HEADER 1237 4322

7658

Jane John Jim Suzan

30 45 2052
• •••

block 130 45 2052

MAIN MEMORY

select name
from R
where age > 50

Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX
(by Natassa Ailamaki, CMU)

Alexandros Labrinidis, Univ. of Pittsburgh 47 CS 2550 / Spring 2006

Roadmap

 Overview of Physical Storage Media
 Magnetic Disks
 Introduction to RAID
 File Organization
 Organization of Records in Files

Alexandros Labrinidis, Univ. of Pittsburgh 48 CS 2550 / Spring 2006

Organization of Records in Files

 Heap – a record can be placed anywhere in the file
where there is space

 Sequential – store records in sequential order, based
on the value of the search key of each record

 Hashing – a hash function computed on some attribute
of each record; the result specifies in which block of the
file the record should be placed

 Records of each relation may be stored in a separate file.
In a clustering file organization records of several
different relations can be stored in the same file
 Why: store related records on the same block to minimize I/O

13

Alexandros Labrinidis, Univ. of Pittsburgh 49 CS 2550 / Spring 2006

Sequential File Organization
 Suitable for applications that require sequential processing of

the entire file
 The records in the file are ordered by a search-key

Alexandros Labrinidis, Univ. of Pittsburgh 50 CS 2550 / Spring 2006

Sequential File Organization (Cont.)

 Deletion – use pointer chains

 Insertion – locate the position where the record is to be
inserted
 if there is free space insert there
 if no free space, insert record

in an overflow block
 In either case, pointer chain

must be updated

 Need to reorganize the file
from time to time to restore
sequential order

Alexandros Labrinidis, Univ. of Pittsburgh 51 CS 2550 / Spring 2006

Clustering File Organization

 Simple file structure stores each relation in a separate file
 Can instead store several relations in one file using a clustering

file organization
 E.g., clustering organization of

customer and depositor:

 good for queries involving depositor customer, and for
queries involving one single customer and his accounts

 bad for queries involving only customer
 results in variable size records

Alexandros Labrinidis, Univ. of Pittsburgh 52 CS 2550 / Spring 2006

Roadmap

 Overview of Physical Storage Media
 Magnetic Disks
 Introduction to RAID
 File Organization
 Organization of Records in Files
 Buffer Management

14

Alexandros Labrinidis, Univ. of Pittsburgh 53 CS 2550 / Spring 2006

Storage Access

 A database file is partitioned into fixed-length storage
units called blocks.
 Blocks are units of both storage allocation and data transfer.

 Database system seeks to minimize the number of
block transfers between the disk and memory.

 We can reduce the number of disk accesses by keeping
as many blocks as possible in main memory.
 Buffer – portion of main memory available to store copies of

disk blocks.
 Buffer manager – subsystem responsible for allocating buffer

space in main memory.

Alexandros Labrinidis, Univ. of Pittsburgh 54 CS 2550 / Spring 2006

Buffer Manager

 Programs call on the buffer manager when they need a
block from disk.
 If the block is already in the buffer, the requesting program is

given the address of the block in main memory
 If the block is not in the buffer,

 the buffer manager allocates space in the buffer for the
block, replacing (throwing out) some other block, if required,
to make space for the new block.

The block that is thrown out is written back to disk only if it
was modified since the most recent time that it was written
to/fetched from the disk.

Once space is allocated in the buffer, the buffer manager
reads the block from the disk to the buffer, and passes the
address of the block in main memory to requester

Alexandros Labrinidis, Univ. of Pittsburgh 55 CS 2550 / Spring 2006

Buffer-Replacement Policies
 Most operating systems replace the block least recently used (LRU

strategy)
 Idea behind LRU – use past pattern of block references as a predictor of

future references
 Queries have well-defined access patterns (such as sequential scans), and a

database system can use the information in a user’s query to predict future
references

 LRU can be a bad strategy for certain access patterns involving repeated scans of
data

 e.g. when computing the join of 2 relations r and s by a nested loops
 for each tuple tr of r do
 for each tuple ts of s do
 if the tuples tr and ts match …

 Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

Alexandros Labrinidis, Univ. of Pittsburgh 56 CS 2550 / Spring 2006

Buffer-Replacement Policies (II)

 Pinned block – memory block that is not allowed to be written
back to disk.

 Toss-immediate strategy – frees the space occupied by a block as
soon as the final tuple of that block has been processed

 Most recently used (MRU) strategy – system must pin the block
currently being processed. After the final tuple of that block has
been processed, the block is unpinned, and it becomes the most
recently used block.

 Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation
 E.g., the data dictionary is frequently accessed. Heuristic: keep data-

dictionary blocks in main memory buffer

