
1

CS 2550 / Spring 2006
Principles of Database Systems

Alexandros Labrinidis
University of Pittsburgh

03 – SQL

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 2550 / Spring 2006

SQL

 SQL = Structured Query Language
 since early 1970s

 Combination of relational algebra and relational calculus
constructs

 More acronyms:
 DML: Data Manipulation Language

 DDL: Data Definition Language
 Includes view definition, integrity constraints,

authorization control

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 2550 / Spring 2006

Relation Schema Example

 Account (account_number, branch_name, balance)

 Branch (branch_name, branch_city, assets)

 Customer (customer_name, customer_street, customer_city)
 For simplicity assume customer_name unique

 Depositor (customer_name, account_number)

 Loan (loan_number, branch_name, amount)

 Borrower (customer_name, loan_number)

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 2550 / Spring 2006

Basic Structure

 A typical SQL query has the form:
select A1, A2, ..., An  RA projection

 from r1, r2, ..., rm  RA cartesian product
 where P  RA selection
 Ai represent attributes
 ri represent relations
 P is a predicate

 Query is equivalent to the relational algebra expression:

∏A1, A2, ..., An (σP (r1 x r2 x ... x rm))

NOTE: SQL results may contain duplicates

 The result of an SQL query is a relation.

2

Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 2550 / Spring 2006

SQL – select

 select clause lists attributes desired in the result
 corresponds to the projection operation of the relational algebra

 E.g. find the names of all branches in the loan relation
select branch_name
from loan

 Same query, in the “pure” relational algebra syntax:
∏branch_name(loan)

 NOTE: SQL does not permit the ‘-’ character in names,
 NOTE: SQL names are case insensitive, i.e. you can use

capital or small letters
Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 2550 / Spring 2006

SQL – select – II

 SQL allows duplicates in relations and in query results

 To force elimination of duplicates, insert keyword
distinct after select

 E.g. find the names of all branches in the loan relations,
and remove duplicates

select distinct branch_name
from loan

 Keyword all specifies that duplicates not be removed
select all branch_name
from loan

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 2550 / Spring 2006

SQL – select – III

 An asterisk in the select clause denotes “all attributes”
select *
from loan

 select can contain arithmetic expressions
 Similar to generalized projection from Relational Algebra
 Can involve the operation, +, –, *, and /,
 Can operate on constants or attributes of tuples

 Example:
select loan_number, branch_name, amount * 100
from loan

Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 2550 / Spring 2006

SQL – where

 where clause specifies conditions the result must satisfy
 corresponds to the selection predicate of the relational algebra

 Example:
 find all loan number for loans made at the Perryridge branch

with loan amounts greater than $1200
select loan_number
from loan
where branch_name =`Perryridge’ and amount > 1200

 Comparison results can be combined using and, or, not

 Comparisons can be applied to results of arithmetic
expressions

3

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 2550 / Spring 2006

SQL – where – II

 SQL includes a between comparison operator

 Example:
 Find the loan number of those loans with loan amounts between

$90,000 and $100,000 (that is, ≥$90,000 and ≤$100,000)

select loan_number
from loan
where amount between 90000 and 100000

is equivalent to:

select loan_number
from loan
where amount >=90000 and amount <= 100000

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 2550 / Spring 2006

SQL – from

 from clause lists the relations involved in the query
 corresponds to the Cartesian product operation of the relational

algebra

 Examples:
 Find the Cartesian product borrower x loan

select *
from borrower, loan

 Find the name, loan number and loan amount of all customers
having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number and

branch_name = ‘Perryridge’

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 2550 / Spring 2006

SQL – rename

 SQL allows renaming relations and attributes using the
as clause:

old_name as new_name

 Example:
 Find the name, loan number and loan amount of all customers;

rename the column name loan_number as loan_id

select customer_name, borrower.loan_number as loan_id, amount

from borrower, loan
where borrower.loan_number = loan.loan_number

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 2550 / Spring 2006

SQL – tuple variables

 Tuple variables are defined in the from clause via the
use of the as clause

 Examples:
 Find the customer names and their loan numbers for all

customers having a loan at some branch.
select customer_name, T.loan_number, S.amount
from borrower as T, loan as S
where T.loan_number = S.loan_number

 Find the names of all branches that have greater assets than
some branch located in Brooklyn

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = `Brooklyn’

4

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 2550 / Spring 2006

SQL – like

 Like
 string-matching operator for comparisons on character strings

 Patterns are described using two special characters:
 percent (%) matches any substring
 underscore (_) matches any single character

 Examples:
 Find the names of all customers whose street includes “Main”

select customer_name
from customer
where customer_street like ‘%Main%’

 Starts-in, Ends-in?

 Match the name “twenty%”
like ‘twenty\%’ escape ‘\’

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 2550 / Spring 2006

SQL – order

 Order-by clause causes the tuples in the result to
appear in sorted order

 Example:
 List in alphabetic order the names of all customers having a loan

in the Perryridge branch
select distinct customer_name
from borrower, loan
where borrower loan_number = loan.loan_number and
 branch_name = ‘Perryridge’
order by customer_name

 specify desc for descending order
 specify asc for ascending order (default)

 E.g. order by customer_name desc

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 2550 / Spring 2006

SQL – order – II

 It is possible to define two or more attributes to order by

 Example:
 List entire loan relation in descendingorder of amount
 If several loans have same amount, order by loan_number

select *
from loan
order by amount desc, loan_number asc

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 2550 / Spring 2006

SQL Set Operations

 The set operations union, intersect, and except
operate on relations

 correspond to the relational algebra operations ∪, ∩, −

 Each of the above operations automatically eliminates
duplicates

 to retain all duplicates use the corresponding multiset
versions union all, intersect all and except all.

5

Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 2550 / Spring 2006

SQL Set Operations – II

 Depositor (customer_name, account_number)

 Borrower (customer_name, loan_number)

 Assume set of customers who have an account:
select customer_name from depositor

 Assume set of customers who have a loan:
select customer_name from borrower

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 2550 / Spring 2006

SQL / Sets: Union

 Find all customers having an account, a loan, or both:
(select customer_name from depositor)
union
(select customer_name from borrower)

 To retain all duplicates:
(select customer_name from depositor)
union all
(select customer_name from borrower)

 If “Jones” has 3 accounts and 2 loans  appears 5 times
(sum of a, b)

Alexandros Labrinidis, Univ. of Pittsburgh 19 CS 2550 / Spring 2006

SQL / Sets: Intersect

 Find all customers having both an account and a loan:
(select customer_name from depositor)
intersect
(select customer_name from borrower)

 To retain all duplicates:
(select customer_name from depositor)
intersect all
(select customer_name from borrower)

 If “Jones” has 3 accounts and 2 loans  appears 2 times
(min of a, b)

Alexandros Labrinidis, Univ. of Pittsburgh 20 CS 2550 / Spring 2006

SQL / Sets: Except

 Find all customers having an account, but no a loan:
(select customer_name from depositor)
except
(select customer_name from borrower)

 To retain all duplicates:
(select customer_name from depositor)
except all
(select customer_name from borrower)

 If “Jones” has 3 accounts and 1 loans  appears 2 times
(a – b, if a>b, or 0 otherwise)

6

Alexandros Labrinidis, Univ. of Pittsburgh 21 CS 2550 / Spring 2006

Roadmap

 SQL Intro
 Select, From, Where
 Rename
 Order-by
 Union, Intersect, Except

 Aggregate Functions
 Null Values
 Nested Subqueries
 Views

Alexandros Labrinidis, Univ. of Pittsburgh 22 CS 2550 / Spring 2006

SQL / Aggregate Functions

 These functions operate on a collection of values and
return a single value

 SQL offers five aggregate functions:
 avg(): average value
 min(): minimum value
 max(): maximum value
 sum(): sum of values
 count(): number of values

Alexandros Labrinidis, Univ. of Pittsburgh 23 CS 2550 / Spring 2006

SQL / Aggregate Functions (Cont.)

 Find the average account balance at the Perryridge branch.

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)
from account
where branch_name = ‘Perryridge’

select count (*)
from customer

select count (distinct customer_name)
from depositor

Alexandros Labrinidis, Univ. of Pittsburgh 24 CS 2550 / Spring 2006

SQL Aggregation – Group By

 Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions must
 appear in group by list

select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name

Note: Similar to aggregation with grouping from Relational Algebra

7

Alexandros Labrinidis, Univ. of Pittsburgh 25 CS 2550 / Spring 2006

SQL Aggregation – Having Clause

 Example:
 Find the names of all branches where the average account

balance is more than $1,200.

select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200

Note: predicates in the having clause are applied after the
 formation of groups, whereas predicates in the where
 clause are applied before forming groups

Alexandros Labrinidis, Univ. of Pittsburgh 26 CS 2550 / Spring 2006

SQL – NULL Values

 Tuples can have NULL value for some of their attributes
 For an unknown value
 For a value that does not exist

 Predicate is null can be used to check for null values.
 Find all loan numbers which appear in the loan relation with

NULL values for amount

select loan_number
from loan
where amount is null

 Any arithmetic expression involving NULL returns NULL
 E.g. 5 + NULL returns NULL

Alexandros Labrinidis, Univ. of Pittsburgh 27 CS 2550 / Spring 2006

SQL – Logic with NULL Values

 Any comparison with null returns unknown
 E.g. 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 “P is unknown”  true if predicate P evaluates to unknown

 Result of where clause predicate is treated as false
if it evaluates to unknown

UFUU

FFFF

UFTT

UFTAND

UUTU

UFTF

TTTT

UFTOR

UU

TF

FT

NOT

Alexandros Labrinidis, Univ. of Pittsburgh 28 CS 2550 / Spring 2006

SQL – NULL Values in Aggregations

 Example:
 Find total of all loan amounts

select sum (amount)
from loan

 sum() operator ignores null amounts

 In general:
 sum(), avg(), min(), max() ignore null values
 count(*) considers null values

 Aggregation on an empty set:
 sum(), avg(), min(), max() return null
 count(*) returns 0

8

Alexandros Labrinidis, Univ. of Pittsburgh 29 CS 2550 / Spring 2006

Roadmap

 SQL Intro
 Select, From, Where
 Rename
 Order-by
 Union, Intersect, Except

 Aggregate Functions
 Null Values
 Nested Subqueries
 Views

Alexandros Labrinidis, Univ. of Pittsburgh 30 CS 2550 / Spring 2006

SQL – Nested Subqueries

 SQL provides a mechanism for nesting subqueries.

 A subquery is a select-from-where expression
that is included within another query.

 A common use of subqueries is to perform tests for
 set membership
 set comparisons
 set cardinality

Alexandros Labrinidis, Univ. of Pittsburgh 31 CS 2550 / Spring 2006

Nested Subqueries – Examples /1

 Find all customers who have both an account
and a loan at the bank:

(select customer_name from depositor)
intersect
(select customer_name from borrower)

 Find all customers who have both an account
and a loan at the bank (version 2):

select distinct customer_name
from borrower
where customer_name in (select customer_name
 from depositor)

Alexandros Labrinidis, Univ. of Pittsburgh 32 CS 2550 / Spring 2006

Nested Subqueries – Examples /2

 Find all customers who have a loan at the bank but do
not have an account at the bank:

(select customer_name from borrower)
except
(select customer_name from depositor)

 Find all customers who have a loan at the bank but do
not have an account at the bank (version 2):

select distinct customer_name
from borrower
where customer_name not in (select customer_name
 from depositor)

9

Alexandros Labrinidis, Univ. of Pittsburgh 33 CS 2550 / Spring 2006

Nested Subqueries – Examples /3

 Find all customers who have both an account and a loan
at the Perryridge branch

 Note: Above query can be written in a much simpler manner. The
 formulation above is simply to illustrate SQL features.

select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and
 branch_name = “Perryridge” and
 (branch_name, customer_name) in

(select branch_name, customer_name
 from depositor, account
 where depositor.account_number =

 account.account_number)

Alexandros Labrinidis, Univ. of Pittsburgh 34 CS 2550 / Spring 2006

Nested Subqueries – Set Comparison

 Find all branches that have greater assets than some
branch located in Brooklyn.

 Same query using > some clause
select branch_name
from branch
where assets > some (select assets

 from branch
 where branch_city = ‘Brooklyn’)

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = ‘Brooklyn’

Alexandros Labrinidis, Univ. of Pittsburgh 35 CS 2550 / Spring 2006

Definition of SOME Clause

0
5
6

(5< some) = true

0
5
0

) = false

5

0
5(5 ≠ some) = true (since 0 ≠ 5)

(read: 5 < some tuple in the relation)

(5< some

) = true(5 = some

Note: (= some) same as in
(≠ some) not the same as not in

Alexandros Labrinidis, Univ. of Pittsburgh 36 CS 2550 / Spring 2006

Definition of ALL Clause

0
5
6

(5< all) = false

6
10
4

) = true

5

4
6(5 ≠ all) = true (since 5 ≠ 4 and 5 ≠ 6)

(5< all

) = false(5 = all

Note: (≠ all) same as not in

10

Alexandros Labrinidis, Univ. of Pittsburgh 37 CS 2550 / Spring 2006

Nested Subqueries – Examples /4

 Find the names of all branches that have greater assets
than all branches located in Brooklyn.

select branch_name
from branch
where assets > all (select assets

 from branch
 where branch_city = ‘Brooklyn’)

Alexandros Labrinidis, Univ. of Pittsburgh 38 CS 2550 / Spring 2006

Test for Empty Relations

 The exists construct returns the value true if the
argument subquery is nonempty.

 exists r equivalent to r ≠ Ø

 not exists r equivalent to r = Ø

Alexandros Labrinidis, Univ. of Pittsburgh 39 CS 2550 / Spring 2006

Nested Subqueries – Examples /5

 relation A contains relation B is
equivalent to exists (B except A)

Find all customers who have an account at all branches in Brooklyn:

select distinct S.customer_name
from depositor as S
where not exists ((select branch_name

from branch
where branch_city = ‘Brooklyn’)

 except
(select R.branch_name
from depositor as T, account as R
where T.account_number = R.account_number and

S.customer_name = T.customer_name))

Alexandros Labrinidis, Univ. of Pittsburgh 40 CS 2550 / Spring 2006

Relation Schema Example

 Account (account_number, branch_name, balance)

 Branch (branch_name, branch_city, assets)

 Customer (customer_name, customer_street, customer_city)
 For simplicity assume customer_name unique

 Depositor (customer_name, account_number)

 Loan (loan_number, branch_name, amount)

 Borrower (customer_name, loan_number)

11

Alexandros Labrinidis, Univ. of Pittsburgh 41 CS 2550 / Spring 2006

SQL Pattern Matching

 LIKE: percent (%) matches any substring
 underscore (_) matches any single character

 Examples:
 Must end in ‘base’  like
 Must have at least two chars  like
 Must have at least two ‘a’s  like
 Must include ‘taba’  like
 Must end in se end start in da  like
 Must have exactly 8 chars  like
 Must start in ‘data’  like

Alexandros Labrinidis, Univ. of Pittsburgh 42 CS 2550 / Spring 2006

SQL Pattern Matching SOLUTIONS

 LIKE: percent (%) matches any substring
 underscore (_) matches any single character

 Examples:
 Must end in ‘base’  like ‘%base’
 Must have at least two chars  like ‘__%’
 Must have at least two ‘a’s  like ‘%a%a%’
 Must include ‘taba’  like ‘%taba%’
 Must end in se end start in da  like ‘da%se’
 Must have exactly 8 chars  like ‘________’
 Must start in ‘data’  like ‘data%’

Alexandros Labrinidis, Univ. of Pittsburgh 43 CS 2550 / Spring 2006

So Far

 Select, From, Where
 Rename
 Like
 Order-by
 Union, Intersect, Except
 Aggregation

 avg(), min(), max(), sum(), count()
 Group-by, Having

 Null Values
 Nested Subqueries

 A subquery is a select-from-where expression
that is included within another query

Alexandros Labrinidis, Univ. of Pittsburgh 44 CS 2550 / Spring 2006

Nested Subqueries

 New operators:
 in, not in
 >some, =>some, <some, <=some, =some, <>some
 >all, =>all, <all, <=all, =all, <>all
 exists, not exists

 Example:
 Find all customers who have a loan at the bank

but do not have an account at the bank
select distinct customer_name
from borrower
where customer_name not in (select customer_name
 from depositor)

12

Alexandros Labrinidis, Univ. of Pittsburgh 45 CS 2550 / Spring 2006

Test for Empty Relations

 The exists construct returns the value true
if the argument subquery is nonempty.
 exists r equivalent to r ≠ Ø
 not exists r equivalent to r = Ø

 The following are equivalent:
 relation A contains relation B
 (B – A) = Ø
 not exists (B except A)

Alexandros Labrinidis, Univ. of Pittsburgh 46 CS 2550 / Spring 2006

Test for Empty Relations – Example

 Find all customers who have an account at all branches in Brooklyn:

select distinct S.customer_name
from depositor as S
where not exists ((select branch_name

from branch
where branch_city = ‘Brooklyn’)

 except

(select R.branch_name
from depositor as T, account as R
where T.account_number = R.account_number and

S.customer_name = T.customer_name))

Alexandros Labrinidis, Univ. of Pittsburgh 47 CS 2550 / Spring 2006

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has
any duplicate tuples in its result (opposite: not unique)

 Find all customers who have at most one account at the
Perryridge branch

 select T.customer_name
from depositor as T
where unique (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number and
account.branch_name = ‘Perryridge’)

at least two

not

Alexandros Labrinidis, Univ. of Pittsburgh 48 CS 2550 / Spring 2006

Views

create view v as <query expression>
drop view v

 Examples
 create view Oakland_accounts as

select * from accounts
where branch_name = ‘Oakland’

 Find all accounts in Oakland whose balance is over $200
select * from Oakland_accounts
where balance > 200

 create view loan_info as
select * from borrower, loan
where borrower.loan_number = loan.loan_number

13

Alexandros Labrinidis, Univ. of Pittsburgh 49 CS 2550 / Spring 2006

View Examples

 A view consisting of branches and their customers

 Find all customers of the Perryridge branch

create view all_customer as
 (select branch_name, customer_name
 from depositor, account
 where depositor.account_number = account.account_number)
union
 (select branch_name, customer_name
 from borrower, loan
 where borrower.loan_number = loan.loan_number)

select customer_name
from all_customer
where branch_name = ‘Perryridge’

Alexandros Labrinidis, Univ. of Pittsburgh 50 CS 2550 / Spring 2006

View Examples (cont)

 Explicitly define attribute names
 Create view branch_loan_totals (branch_name, total_loan)

 as select branch_name, sum(amount)
from loan
group-by branch_name

 Schema:
Loan (loan_number, branch_name, amount)
Borrower (customer_name, loan_number)

 create view loan_info_short as
select customer_name, amount
from borrower, loan
where borrower.loan_number = loan.loan_number

Alexandros Labrinidis, Univ. of Pittsburgh 51 CS 2550 / Spring 2006

Complex Queries

 Find the average account balance of those branches
where the average account balance is > $1200

select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200

 Find the average account balance of those branches
where the average account balance is > $1200

select branch_name, avg_balance
from (select branch_name, avg (balance)

 from account
 group by branch_name)

 as result (branch_name, avg_balance)
where avg_balance > 1200

Alexandros Labrinidis, Univ. of Pittsburgh 52 CS 2550 / Spring 2006

So Far

 Basic SQL
 Rename, Like, Order-by
 Union, Intersect, Except
 Aggregation

 avg(), min(), max(), sum(), count()
 Group-by, Having

 Null Values
 Nested Subqueries
 Views
 Complex Queries

14

Alexandros Labrinidis, Univ. of Pittsburgh 53 CS 2550 / Spring 2006

Roadmap

 Database Modification
 Deletions
 Insertions
 Updates

 Transactions

 Joined Relations

Alexandros Labrinidis, Univ. of Pittsburgh 54 CS 2550 / Spring 2006

SQL – Deletion

 delete from R
where P
 R is relation name
 P is predicate

 Delete all accounts in the Perryridge Branch
 delete from account

where branch_name = ‘Perryridge’

 Delete all loans with amounts between $1300 and $1700
 delete from loan

where amount between 1300 and 1700

Alexandros Labrinidis, Univ. of Pittsburgh 55 CS 2550 / Spring 2006

SQL – Deletion /2

 Delete all accounts at every branch located in Pittsburgh
delete from account
where branch_name in (select branch_name

 from branch
 where branch_city = ‘Pittsburgh’)

Alexandros Labrinidis, Univ. of Pittsburgh 56 CS 2550 / Spring 2006

SQL – Deletion /3

 Delete all accounts with balances below the average

delete from account
where balance < (select avg (balance)

 from account)

 Problem: as we delete tuples from deposit, the average
 balance changes

 Solution (used in SQL):

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing
avg or retesting the tuples)

15

Alexandros Labrinidis, Univ. of Pittsburgh 57 CS 2550 / Spring 2006

SQL – Insertion

 Add a new tuple to account
insert into account

values (‘A-9732’, ‘Perryridge’, 1200)
or equivalently:
insert into account (branch_name, balance, account_number)

values (‘Perryridge’, 1200, ‘A-9732’)

or equivalently:
insert into account (balance, branch_name, account_number)

values (1200, ‘Perryridge’, ‘A-9732’)

 Add a new tuple to account with balance set to null
insert into account

values (‘A-777’, ‘Perryridge’, null)

Alexandros Labrinidis, Univ. of Pittsburgh 58 CS 2550 / Spring 2006

SQL – Insertion /2

 Provide as a gift for all loan customers of the Perryridge branch, a
$200 savings account
 Let the loan number = account number for the savings account

 insert into account
select loan_number, branch_name, 200
from loan
where branch_name = ‘Perryridge’

 insert into depositor
select customer_name, loan_number
from loan, borrower
where branch_name = ‘Perryridge’ and

loan.loan_number = borrower.loan_number

Alexandros Labrinidis, Univ. of Pittsburgh 59 CS 2550 / Spring 2006

SQL – Insertion /3

 The select-from-where statement is fully evaluated
before any of its results are inserted into the relation

 Otherwise, queries like
insert into table1
select *
from table1

would cause problems (what?)

Alexandros Labrinidis, Univ. of Pittsburgh 60 CS 2550 / Spring 2006

SQL – Updates

 Increase all account balances by 5%
 update account

set balance = balance * 1.05

 Increase all account balances by 6% if balance over 500
 update account

set balance = balance * 1.06
where balance > 500

 Increase all account balances by 7% if balance over avg
 update account

set balance = balance * 1.07
where balance > select avg (balance)

from account

16

Alexandros Labrinidis, Univ. of Pittsburgh 61 CS 2550 / Spring 2006

SQL – Updates /2

 Increase all accounts with balances over $10,000 by 6%,
all other accounts receive 5%.
 Write two update statements:

update account
set balance = balance ∗ 1.06
where balance > 10000

update account
set balance = balance ∗ 1.05
where balance ≤ 10000

 The order is important. Why?
 Can be done better using the case statement (next)

Alexandros Labrinidis, Univ. of Pittsburgh 62 CS 2550 / Spring 2006

SQL – Updates / Case Statement

 Same query as before:
Increase all accounts with balances over $10,000 by 6%,
all other accounts receive 5%.

update account
set balance = case

when balance <= 10000 then balance *1.05
else balance * 1.06

 end

Alexandros Labrinidis, Univ. of Pittsburgh 63 CS 2550 / Spring 2006

SQL Updates / Views

 Create a view of all loan data in loan relation, hiding the amount:
create view branch_loan as

select branch_name, loan_number
from loan

 Add a new tuple to branch_loan
insert into branch_loan

values (‘Perryridge’, ‘L-307’)
This insertion must be represented by the insertion of tuple

(‘L-307’, ‘Perryridge’, null)
into the loan relation

 Updates on more complex views are difficult or impossible to translate, and
hence are disallowed.

Alexandros Labrinidis, Univ. of Pittsburgh 64 CS 2550 / Spring 2006

Roadmap

 Database Modification
 Deletions
 Insertions
 Updates

 Transactions

 Joined Relations

17

Alexandros Labrinidis, Univ. of Pittsburgh 65 CS 2550 / Spring 2006

SQL – Transactions

 A transaction is a sequence of queries and update
statements executed as a single unit
 Started implicitly
 Terminated by:

 Commit – makes all updates permanent
 Rollback – undoes all updates performed by transaction

 Motivating Example:
 Transfer money from account A to account B

 Deduct $x from A
 Credit $x to B

 If one of two steps fail  database is in inconsistent state
 Either both steps should succeed or none

Alexandros Labrinidis, Univ. of Pittsburgh 66 CS 2550 / Spring 2006

SQL – Transactions (Cont.)

 In most database systems, each SQL statement that
executes successfully is automatically committed.
 Each transaction would then consist of only a single statement

 Automatic commit can usually be turned off, allowing multi-
statement transactions

 Another option in SQL:1999
 enclose statements within

 begin atomic
 …
 end

Alexandros Labrinidis, Univ. of Pittsburgh 67 CS 2550 / Spring 2006

Roadmap

 Database Modification
 Deletions
 Insertions
 Updates

 Transactions

 Joined Relations

Alexandros Labrinidis, Univ. of Pittsburgh 68 CS 2550 / Spring 2006

Joined Relations

 Join operation
 take two relations and return as a result another relation
 typically used as subquery expressions in from clause

 Join condition
 defines which/how tuples in the two relations match
 defines what attributes are present in the result of the join

 Join type
 defines how to treat tuples that do not match

Join Types
inner join
left outer join
right outer join
full outer join

Join Conditions
natural
on <predicate>
using (A1, A2, ..., An)

18

Alexandros Labrinidis, Univ. of Pittsburgh 69 CS 2550 / Spring 2006

Joined Relations – II

 on <predicate>
 join condition = predicate
 schema includes all attributes (left relation first, right second)
 SQL does not require attribute names to be unique

 natural join
 natural join (from Relational Algebra) on all common attributes
 schema:

 common attributes first (same order as in left relation)
 remaining attributes from left relation
 remaining attributes from right relation

 using (<attribute_list>)
 Same as natural join, BUT focus only on attributes in

attribute_list (must be common and appear once in result)

Alexandros Labrinidis, Univ. of Pittsburgh 70 CS 2550 / Spring 2006

Example Datasets

 Loan

 Borrower

 Note: borrower information missing for L-260 and loan information
missing for L-155

amount

3000
4000
1700

branch_name

Downtown
Redwood
Perryridge

loan_number

L-170
L-230
L-260

customer_name loan_number

Jones
Smith
Hayes

L-170
L-230
L-155

Alexandros Labrinidis, Univ. of Pittsburgh 71 CS 2550 / Spring 2006

Joined Relations – Examples

 loan inner join borrower on
loan.loan_number = borrower.loan_number

 loan left outer join borrower on
loan.loan_number = borrower.loan_number

branch_name amount

Downtown
Redwood

3000
4000

customer_name loan_number

Jones
Smith

L-170
L-230

loan_number

L-170
L-230

branch_name amount

Downtown
Redwood
Perryridge

3000
4000
1700

customer_name loan_number

Jones
Smith
null

L-170
L-230
null

loan_number

L-170
L-230
L-260

Alexandros Labrinidis, Univ. of Pittsburgh 72 CS 2550 / Spring 2006

Joined Relations – Examples

 loan natural inner join borrower

 loan natural right outer join borrower

branch_name amount

Downtown
Redwood

3000
4000

customer_name

Jones
Smith

loan_number

L-170
L-230

branch_name amount

Downtown
Redwood
null

3000
4000
null

customer_name

Jones
Smith
Hayes

loan_number

L-170
L-230
L-155

19

Alexandros Labrinidis, Univ. of Pittsburgh 73 CS 2550 / Spring 2006

Joined Relations – Examples
 loan full outer join borrower using (loan_number)

 Find all customers who have either an account or a loan (but
not both) at the bank.

branch_name amount

Downtown
Redwood
Perryridge
null

3000
4000
1700
null

customer_name

Jones
Smith
null
Hayes

loan_number

L-170
L-230
L-260
L-155

select customer_name
from (depositor natural full outer join borrower)
where account_number is null or loan_number is null

Alexandros Labrinidis, Univ. of Pittsburgh 74 CS 2550 / Spring 2006

Roadmap

 Joined Relations

 SQL – Data Definition Language
 Domain Types and Definitions
 Domain Constraints
 Referential Integrity
 Schema Changes

Alexandros Labrinidis, Univ. of Pittsburgh 75 CS 2550 / Spring 2006

Data Definition Language (DDL)

 The schema for each relation.
 The domain of values associated with each attribute.
 Integrity constraints
 The set of indices to be maintained for each relations.
 Security and authorization information for each relation.
 The physical storage structure of each relation on disk

Allows the specification of a set of relations and also
information about each relation, including:

Alexandros Labrinidis, Univ. of Pittsburgh 76 CS 2550 / Spring 2006

Domain Types in SQL

 char(n): fixed length character string, with user-specified length n

 varchar(n): Variable length character strings, with user-specified
maximum length n.

 int: Integer (finite subset of the integers / machine-dependent).

 smallint: Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,n): Fixed point number, with user-specified precision of p
digits, with n digits to the right of decimal point.

 real, double precision: Floating point and double-precision floating point
numbers, with machine-dependent precision.

 float(n): Floating point number, with user-specified precision of at least n
digits

20

Alexandros Labrinidis, Univ. of Pittsburgh 77 CS 2550 / Spring 2006

Domain Types in SQL – II

 Null values are allowed in all the domain types
 Declaring an attribute to be not null prohibits null values

for that attribute.

 create domain construct in SQL-92 creates user-
defined domain types

 Examples:
 create domain person_name char(25) not null
 create domain customer_city varchar(50)

Alexandros Labrinidis, Univ. of Pittsburgh 78 CS 2550 / Spring 2006

Date/Time Types in SQL

 date. Dates, containing a (4 digit) year, month and date
 E.g. date ‘2001-7-27’

 time. Time of day, in hours, minutes and seconds.
 E.g. time ’09:00:30’ time ’09:00:30.75’

 timestamp: date plus time of day
 E.g. timestamp ‘2001-7-27 09:00:30.75’

 Interval: period of time
 E.g. Interval ‘1’ day
 Subtracting a date/time/timestamp value from another gives

an interval value
 Interval values can be added to date/time/timestamp values

Alexandros Labrinidis, Univ. of Pittsburgh 79 CS 2550 / Spring 2006

Date/Time Types in SQL – II

 Operations on Date Types:
 Datetime (+ or –) Interval = Datetime
 Datetime – Datetime = Interval
 Interval (* or /) Number = Interval
 Interval (+ or –) Interval = Interval

 Can compare data/time/timestamp values

 Can extract values of individual fields from
date/time/timestamp
 E.g. extract (year from r.start_time)

 Can cast string types to date/time/timestamp
 E.g. cast <string-valued-expression> as date

Alexandros Labrinidis, Univ. of Pittsburgh 80 CS 2550 / Spring 2006

Create Table Construct

 An SQL relation is defined using the create table
command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation
 each Ai is an attribute name in the schema of relation r
 Di is the data type of values in the domain of attribute Ai

 Example:
create table branch

(branch_name char(15) not null,
branch_city char(30),
assets integer)

21

Alexandros Labrinidis, Univ. of Pittsburgh 81 CS 2550 / Spring 2006

Roadmap

 Joined Relations

 SQL – Data Definition Language
 Domain Types and Definitions
 Domain Constraints
 Referential Integrity
 Schema Changes

Alexandros Labrinidis, Univ. of Pittsburgh 82 CS 2550 / Spring 2006

Domain Constraints

 The most elementary form of integrity constraint.

 They test values inserted in the database, and test
queries to ensure that the comparisons make sense.

 New domains can be created from existing data types
 E.g. create domain Dollars numeric(12, 2)

 create domain Pounds numeric(12,2)

 We cannot assign or compare a value of type Dollars to a
value of type Pounds.
 However, we can convert type:

 (cast r.A as Pounds)
(Should also multiply by the dollar-to-pound conversion-rate)

Alexandros Labrinidis, Univ. of Pittsburgh 83 CS 2550 / Spring 2006

Domain Constraints – check clause

 check clause in SQL permits domains to be restricted:

 Example:
 Use check clause to ensure that an hourly-wage domain

allows only values greater than a specified value.
create domain hourly-wage numeric(5,2)

constraint value-test check(value > = 4.00)

 The domain has a constraint that ensures that the hourly-wage
is greater than 4.00

 The clause constraint value-test is optional; useful to indicate
which constraint an update violated.

Alexandros Labrinidis, Univ. of Pittsburgh 84 CS 2550 / Spring 2006

Domain Constraints – check clause 2

 Can have complex conditions in domain check

 Examples
 Make sure account is either checking or savings
 create domain AccountType char(10)

 constraint account-type-test
 check (value in (‘Checking’, ‘Savings’))

 Make sure branch-name is valid one
 check (branch-name in (select branch-name from branch))

22

Alexandros Labrinidis, Univ. of Pittsburgh 85 CS 2550 / Spring 2006

Roadmap

 Joined Relations

 SQL – Data Definition Language
 Domain Types and Definitions
 Domain Constraints
 Referential Integrity
 Schema Changes

Alexandros Labrinidis, Univ. of Pittsburgh 86 CS 2550 / Spring 2006

Referential Integrity

 Ensures that a value that appears in one relation for a
given set of attributes, also appears for a certain set of
attributes in another relation.

 Examples:
 If “Perryridge” is a branch name appearing in one of the tuples

in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

 If faculty_id “12345678” appears in one of the tuples in the
teaches relation, then there exists a tuple in the faculty relation
for faculty with id=“12345678”

Alexandros Labrinidis, Univ. of Pittsburgh 87 CS 2550 / Spring 2006

Referential Integrity – Definition

 Formal Definition
 Let r1(R1) and r2(R2) be relations with primary keys K1 and K2

respectively.

 The subset α of R2 is a foreign key referencing K1 in relation
r1, if for every t2 in r2 there must be a tuple t1 in r1 such that
t1[K1] = t2[α].

 Referential integrity constraint also called subset dependency
since its can be written as
 ∏α (r2) ⊆ ∏K1 (r1)

Alexandros Labrinidis, Univ. of Pittsburgh 88 CS 2550 / Spring 2006

RI on Database Modifications

 α of R2 is a foreign key referencing K1 in relation r1

 Insert. If a tuple t2 is inserted into r2, we must ensure
that there is a tuple t1 in r1 such that t1[K] = t2[α].

 t2 [α] ∈ ∏K (r1)

 Delete. If a tuple, t1 is deleted from r1, we must
compute the set of tuples in r2 that reference t1:

σα = t1[K] (r2)
If this set is not empty
 either the delete command is rejected as an error, or
 the tuples that reference t1 must themselves be deleted

(cascading deletions are possible).

23

Alexandros Labrinidis, Univ. of Pittsburgh 89 CS 2550 / Spring 2006

RI on Updates

 α of R2 is a foreign key referencing K1 in relation r1

 If a tuple t2 is updated in relation r2 and the update
modifies values for foreign key α, then a test similar
to the insert case is made:
 Let t2’ denote the new value of tuple t2. We must ensure that

t2’[α] ∈ ∏K(r1)

Alexandros Labrinidis, Univ. of Pittsburgh 90 CS 2550 / Spring 2006

RI on Updates (2)

 α of R2 is a foreign key referencing K1 in relation r1

 If a tuple t1 is updated in r1, and the update modifies
values for the primary key (K), then a test similar to
the delete case is made:
 We must compute

 σα = t1[K] (r2)
using the old value of t1 (the value before the update is applied).

 If this set is not empty

1. the update may be rejected as an error, or

2. the update may be cascaded to the tuples in the set, or

3. the tuples in the set may be deleted.

Alexandros Labrinidis, Univ. of Pittsburgh 91 CS 2550 / Spring 2006

Referential Integrity in SQL

 Primary, candidate and foreign keys can be specified
as part of the SQL create table statement:
 primary key clause:

 list attributes that comprise the primary key.
 unique key clause:

 list attributes that comprise a candidate key.
 foreign key clause:

 list attributes that comprise the foreign key and specify
name of the relation referenced by the foreign key

 By default, a foreign key references the primary key
attributes of the referenced table
 foreign key (account_number) references account

 Short form for specifying a single column as foreign key
account_number char (10) references account

Alexandros Labrinidis, Univ. of Pittsburgh 92 CS 2550 / Spring 2006

RI – SQL Example

create table customer
(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch
(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name))

24

Alexandros Labrinidis, Univ. of Pittsburgh 93 CS 2550 / Spring 2006

RI – SQL Example (cont)

create table account
(account-number char(10),
 branch-name char(15),
 balance integer,
 primary key (account-number),
 foreign key (branch-name) references branch)

create table depositor
(customer-name char(20),
 account-number char(10),
 primary key (customer-name, account-number),
 foreign key (account-number) references account,
 foreign key (customer-name) references customer)

Alexandros Labrinidis, Univ. of Pittsburgh 94 CS 2550 / Spring 2006

Cascading Actions in SQL

create table account
. . .
foreign key(branch-name) references branch

on delete cascade
on update cascade

. . .)

 on delete cascade
  if a delete of a tuple in branch results in referential-integrity

constraint violation, the delete “cascades” to the account
relation, deleting the tuple that refers to the branch that was
deleted.

 Cascading updates are similar.

Alexandros Labrinidis, Univ. of Pittsburgh 95 CS 2550 / Spring 2006

Referential Integrity in SQL (Cont.)

 Alternative to cascading:
 on delete set null
 on delete set default

 Null values in foreign key attributes complicate SQL
referential integrity semantics, and are best prevented
using not null
 if any attribute of a foreign key is null, the tuple is defined to

satisfy the foreign key constraint!

Alexandros Labrinidis, Univ. of Pittsburgh 96 CS 2550 / Spring 2006

Roadmap

 Joined Relations

 SQL – Data Definition Language
 Domain Types and Definitions
 Domain Constraints
 Referential Integrity
 Schema Changes

25

Alexandros Labrinidis, Univ. of Pittsburgh 97 CS 2550 / Spring 2006

Drop Table Construct

 The drop table command deletes all information
about the dropped relation from the database.
 E.g., drop table customer
 delete all tuples and schema information

 Note difference from delete
 E.g., delete from customer
 all tuples are deleted, but schema information remains

 Note difference from drop view
 E.g., drop view all-customer
 no tuple is deleted, but view definition is deleted

Alexandros Labrinidis, Univ. of Pittsburgh 98 CS 2550 / Spring 2006

Alter Table Construct
 The alter table command is used to add

attributes to an existing relation.

 alter table r add A D
where A is the name of the attribute to be added
to relation r and D is the domain of A.
 All tuples in the relation are assigned null as the

value for the new attribute.

 The alter table command can also be used to
drop attributes of a relation

alter table r drop A
where A is the name of an attribute of relation r
 Dropping of attributes not supported by many databases

Alexandros Labrinidis, Univ. of Pittsburgh 99 CS 2550 / Spring 2006

Integrity Constraints & Security

Integrity Constraints
 guard against accidental damage to the database
 we focus on constraints that can be tested

with minimal overhead

Security
 prevent unauthorized access to data (read or write)

Alexandros Labrinidis, Univ. of Pittsburgh 100 CS 2550 / Spring 2006

Roadmap

 Triggers

 Security
 Authorization
 Authorization in SQL

26

Alexandros Labrinidis, Univ. of Pittsburgh 101 CS 2550 / Spring 2006

Triggers

 A trigger is a statement that is executed automatically
by the system as a side effect of a modification to the
database.

 To design a trigger mechanism, we must:
 Specify the conditions under which the trigger is to be executed.
 Specify the actions to be taken when the trigger executes.

 Event-Condition-Action model for triggers

Alexandros Labrinidis, Univ. of Pittsburgh 102 CS 2550 / Spring 2006

Trigger Example

 Suppose that instead of allowing negative account
balances, the bank deals with overdrafts by
 setting the account balance to zero
 creating a loan in the amount of the overdraft
 giving this loan a loan number identical to the account number of

the overdrawn account

 The condition for executing the trigger is an update to
the account relation that results in a negative balance
value.

Alexandros Labrinidis, Univ. of Pittsburgh 103 CS 2550 / Spring 2006

Trigger Example in SQL
create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic

insert into borrower
(select customer-name, account-number

 from depositor
 where nrow.account-number = depositor.account-number);

 insert into loan values
(n.row.account-number, nrow.branch-name, – nrow.balance);

 update account set balance = 0
where account.account-number = nrow.account-number

end

event

condition

actions

Alexandros Labrinidis, Univ. of Pittsburgh 104 CS 2550 / Spring 2006

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes
 create trigger overdraft-trigger after update of balance on account

 Values of attributes before and after an update can be referenced
 referencing old row as : for deletes and updates
 referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as extra
constraints. E.g. convert blanks to null.

create trigger setnull-trigger before update on r
referencing new row as nrow
for each row
 when nrow.phone-number = ‘ ‘
 set nrow.phone-number = null

27

Alexandros Labrinidis, Univ. of Pittsburgh 105 CS 2550 / Spring 2006

Statement Level Triggers

 Instead of executing a separate action for each affected
row, a single action can be executed for all rows affected
by a transaction

 Use for each statement instead of for each row

 Use referencing old table or referencing new table
to refer to temporary tables (called transition tables)
containing the affected rows

 Can be more efficient when dealing with SQL statements that
update a large number of rows

Alexandros Labrinidis, Univ. of Pittsburgh 106 CS 2550 / Spring 2006

Triggers for External World Actions

 We sometimes require external world actions to be
triggered on a database update
 E.g. re-ordering an item whose quantity in a warehouse has

become small, or turning on an alarm light,

 Triggers cannot be used to directly implement external-
world actions, BUT
 Triggers can be used to record actions-to-be-taken in a separate

table
 Have an external process that repeatedly scans the table, carries

out external-world actions and deletes action from table

Alexandros Labrinidis, Univ. of Pittsburgh 107 CS 2550 / Spring 2006

External World Actions (cont.)

 E.g. Suppose a warehouse has the following tables
 inventory(item, level):

How much of each item is in the warehouse

 minlevel(item, level) :
What is the minimum desired level of each item

 reorder(item, amount):
What quantity should we re-order at a time

 orders(item, amount) :
Orders to be placed (read by external process)

Alexandros Labrinidis, Univ. of Pittsburgh 108 CS 2550 / Spring 2006

External World Actions (Cont.)

create trigger reorder-trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row
 when nrow.level < = (select level

 from minlevel
 where minlevel.item = orow.item)

 and orow.level > (select level
 from minlevel

 where minlevel.item = orow.item)
 begin

insert into orders
 (select item, amount
 from reorder
 where reorder.item = orow.item)

 end

event

conditions

actions

28

Alexandros Labrinidis, Univ. of Pittsburgh 109 CS 2550 / Spring 2006

When Not To Use Triggers

 Triggers were used earlier for tasks such as
 maintaining summary data (e.g. total salary of each department)
 Replicating databases by recording changes to special relations

(called change or delta relations) and having a separate
process that applies the changes over to a replica

 There are better ways of doing these now:
 Databases today provide built in materialized view facilities to

maintain summary data
 Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in
many cases
 Define methods to update fields
 Carry out actions as part of the update methods instead of

through a trigger

Alexandros Labrinidis, Univ. of Pittsburgh 110 CS 2550 / Spring 2006

Roadmap

 Triggers

 Security
 Authorization
 Authorization in SQL

Alexandros Labrinidis, Univ. of Pittsburgh 111 CS 2550 / Spring 2006

Security

 Security: protection from malicious attempts to steal or
modify data

 Database system level
 Operating system level
 Network level
 Physical level
 Human level

Alexandros Labrinidis, Univ. of Pittsburgh 112 CS 2550 / Spring 2006

Security (cont.)
 Database system level

 Authentication and authorization mechanisms to allow specific
users access only to required data

 We concentrate on authorization in the rest of this chapter

 Operating system level
 Operating system super-users can do anything they want to the

database! Good operating system level security is required.

 Network level: must use encryption to prevent
 Eavesdropping (unauthorized reading of messages)
 Masquerading (pretending to be an authorized user or sending

messages supposedly from authorized users)

29

Alexandros Labrinidis, Univ. of Pittsburgh 113 CS 2550 / Spring 2006

Security (cont.)

 Physical level
 Physical access to computers allows destruction of data by

intruders; traditional lock-and-key security is needed
 Computers must also be protected from floods, fire, etc.

 Human level
 Users must be screened to ensure that an authorized users do

not give access to intruders
 Users should be trained on password selection and secrecy

Alexandros Labrinidis, Univ. of Pittsburgh 114 CS 2550 / Spring 2006

Roadmap

 Triggers

 Security
 Authorization
 Authorization in SQL

Alexandros Labrinidis, Univ. of Pittsburgh 115 CS 2550 / Spring 2006

Authorization

Forms of authorization on parts of the database:
 Read authorization - allows reading, but not

modification of data.

 Insert authorization - allows insertion of new data,
but not modification of existing data.

 Update authorization - allows modification, but not
deletion of data.

 Delete authorization - allows deletion of data

Alexandros Labrinidis, Univ. of Pittsburgh 116 CS 2550 / Spring 2006

Authorization (cont.)

Forms of authorization to modify the database schema:
 Index authorization - allows creation and deletion of

indices.

 Resources authorization - allows creation of new
relations.

 Alteration authorization - allows addition or deletion
of attributes in a relation.

 Drop authorization - allows deletion of relations.

30

Alexandros Labrinidis, Univ. of Pittsburgh 117 CS 2550 / Spring 2006

Authorization and Views

 Users can be given authorization on views, without being
given any authorization on the relations used in the view
definition

 Ability of views to hide data serves both to
 simplify usage of the system, and
 enhance security by allowing users access only

to data they need for their job

 A combination or relational-level security and view-level
security can be used to limit a user’s access to precisely
the data that he/she needs.

Alexandros Labrinidis, Univ. of Pittsburgh 118 CS 2550 / Spring 2006

View Example

 Suppose a bank clerk needs to know the names of the
customers of each branch, but is not authorized to see
specific loan information.

 Approach: Deny direct access to the loan relation, but grant
access to the view cust-loan, which consists only of the names
of customers and the branches at which they have a loan.

 The cust-loan view is defined in SQL as follows:

create view cust-loan as
 select branchname, customer-name
 from borrower, loan
 where borrower.loan-number = loan.loan-number

Alexandros Labrinidis, Univ. of Pittsburgh 119 CS 2550 / Spring 2006

View Example (Cont.)

 The clerk is authorized to see the result of the query:
 select *

from cust-loan

 When the query processor translates the result into a
query on the actual relations in the database, we obtain
a query on borrower and loan.

 Authorization must be checked on the clerk’s query
before query processing replaces a view by the definition
of the view.

Alexandros Labrinidis, Univ. of Pittsburgh 120 CS 2550 / Spring 2006

Authorization on Views

 Creation of view does not require resources
authorization since no real relation is being created

 Creator of a view gets only those privileges that provide
no additional authorization beyond that she already had.

 Example:
 if creator of view cust-loan had only read authorization on

borrower and loan, he gets only read authorization on cust-loan

31

Alexandros Labrinidis, Univ. of Pittsburgh 121 CS 2550 / Spring 2006

Granting of Privileges

 The passage of authorization from one user to another
may be represented by an authorization graph.
 The nodes of this graph are the users.
 The root of the graph is the database administrator.

 Consider graph for update authorization on loan.
 An edge Ui →Uj indicates that user Ui has granted update

authorization on loan to Uj.

U3

U1 U4

U2 U5DBA

Alexandros Labrinidis, Univ. of Pittsburgh 122 CS 2550 / Spring 2006

Authorization Grant Graph

 Requirement: All edges in an authorization graph must be part of
some path originating with the database administrator

 If DBA revokes grant from U1:
 Grant must be revoked from U4 since U1 no longer has authorization
 Grant must not be revoked from U5 since U5 has another authorization

path from DBA through U2

 Must prevent cycles of grants with no path from the root:
 DBA grants authorization to U7

 U7 grants authorization to U8

 U8 grants authorization to U7

 DBA revokes authorization from U7

 Must revoke grant U7 to U8 and from U8 to U7 since there is no path
from DBA to U7 or to U8 anymore.

Alexandros Labrinidis, Univ. of Pittsburgh 123 CS 2550 / Spring 2006

Roadmap

 Triggers

 Security
 Authorization
 Authorization in SQL

Alexandros Labrinidis, Univ. of Pittsburgh 124 CS 2550 / Spring 2006

Security Specification in SQL

 The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>

 <user list> is:
 a user-id
 public, which allows all valid users the privilege granted
 A role (more on this later)

 Granting a privilege on a view does not imply granting
any privileges on the underlying relations.

 The grantor of the privilege must already hold the
privilege on the specified item (or be the database
administrator).

32

Alexandros Labrinidis, Univ. of Pittsburgh 125 CS 2550 / Spring 2006

Privileges in SQL

 select: allows read access to relation,or the ability to query using the
view

 Example: grant users U1, U2, and U3 select authorization on the branch
relation:

grant select on branch to U1, U2, U3

 insert: the ability to insert tuples
 update: the ability to update using the SQL update statement
 delete: the ability to delete tuples.
 references: ability to declare foreign keys when creating relations.
 all privileges: used as a short form for all the allowable privileges

Alexandros Labrinidis, Univ. of Pittsburgh 126 CS 2550 / Spring 2006

Privilege To Grant Privileges

 with grant option: allows a user who is granted a
privilege to pass the privilege on to other users.

 Example:
grant select on branch to U1 with grant option

 gives U1 the select privileges on branch and allows U1 to grant
this privilege to others

Alexandros Labrinidis, Univ. of Pittsburgh 127 CS 2550 / Spring 2006

Roles

 Roles permit common privileges for a class of users can
be specified just once by creating a corresponding “role”

 Privileges can be granted to or revoked from roles, just
like user

 Roles can be assigned to users, and even to other roles

Alexandros Labrinidis, Univ. of Pittsburgh 128 CS 2550 / Spring 2006

Roles Example

create role teller
create role manager

 grant select on branch to teller
grant update (balance) on account to teller
grant all privileges on account to manager

grant teller to manager

grant teller to alice, bob
grant manager to avi

33

Alexandros Labrinidis, Univ. of Pittsburgh 129 CS 2550 / Spring 2006

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.
revoke<privilege list>
on <relation name or view name> from <user list>

[restrict|cascade]

 Example:
revoke select on branch from U1, U2, U3 cascade

 Revocation of a privilege from a user may cause other
users also to lose that privilege
 referred to as cascading of the revoke.

 We can prevent cascading by specifying restrict:
revoke select on branch from U1, U2, U3 restrict
With restrict, the revoke command fails if cascading revokes
are required.

Alexandros Labrinidis, Univ. of Pittsburgh 130 CS 2550 / Spring 2006

Revoking Authorization in SQL (cont)

 <privilege-list> may be all to revoke all privileges the
revokee may hold.

 If <revokee-list> includes public all users lose the
privilege except those granted it explicitly.

 If the same privilege was granted twice to the same user
by different grantees, the user may retain the privilege
after the revocation.

 All privileges that depend on the privilege being revoked
are also revoked.

Alexandros Labrinidis, Univ. of Pittsburgh 131 CS 2550 / Spring 2006

Limitations of SQL Authorization
 SQL does not support authorization at a tuple level

 E.g. we cannot restrict students to see only (the tuples storing) their
own grades

 With the growth in Web access to databases, database accesses
come primarily from application servers.
 End users don't have database user ids, they are all mapped to the

same database user id
 All end-users of an application (such as a web application) may

be mapped to a single database user
 The task of authorization in above cases falls on the application

program, with no support from SQL
 Benefit: fine grained authorizations, such as to individual tuples, can

be implemented by the application.
 Drawback: Authorization must be done in application code, and

may be dispersed all over an application
 Checking for absence of authorization loopholes becomes very

difficult since it requires reading large amounts of application code

Alexandros Labrinidis, Univ. of Pittsburgh 132 CS 2550 / Spring 2006

Audit Trails
 An audit trail is a log of all changes

(inserts/deletes/updates) to the database along with
information such as which user performed the change,
and when the change was performed.

 Used to track erroneous/fraudulent updates.

 Can be implemented using triggers, but many database
systems provide direct support.

34

Alexandros Labrinidis, Univ. of Pittsburgh 133 CS 2550 / Spring 2006

Encryption

 Data may be encrypted when database authorization
provisions do not offer sufficient protection.

 Properties of good encryption technique:
 Relatively simple for authorized users to encrypt and decrypt

data.
 Encryption scheme depends not on the secrecy of the algorithm

but on the secrecy of a parameter of the algorithm called the
encryption key.

 Extremely difficult for an intruder to determine the encryption
key.

