
CS 1520 / CoE 1520: Programming Languages for Web Applications (Spring 2012)
Department of Computer Science, University of Pittsburgh

Term Project: Super-Advanced PIttsburgh Emergency Notification System (SAPIENS)
Released: April 15th, 2012 Due: 11:59pm, Thursday, April 26th, 2012

Goal
Build a realistic project utilizing web programming, while integrating with external APIs.

Description
You are asked to build SAPIENS, the Super-Advanced PIttsburgh Emergency Notification System, using
PHP, MySQL, and Javascript/AJAX. SAPIENS is designed to overcome the one-size-fits-all approach to
notifications, by providing a means to distinguish among:

• Different areas of interest, based on static subscriptions by users,
• Different areas of interest, based on dynamic user location (acquired by means of a virtual “check-

in” to that location),
• Different levels of severity of the notifications (1: non-critical, 2: critical, 3: very-critical), and
• Different communication mediums (namely: web, email, and text messages).

The main idea is that users of SAPIENS register subscriptions for locations of interest (statically or dy-
namically) and get notified when an event is generated for locations they have subscribed to. Notification
can happen by web (i.e., when they login to SAPIENS), by email, or by text message (implemented
through email), according to the event’s level of severity and the preferences of the user.

Database Schema
The database schema is provided at the following URL:
http://db.cs.pitt.edu/courses/cs1520/spring2012/assign/a5.project.sql
You should use this in order to create the set of tables needed for the project, in your own database.

The database consists of the following tables:

Users Table Users is used to record the profile information of every user, including his/her contact in-
formation (email and cell phone), as well as the location of his/her last check-in. Notice that
you only need to record the last location, and this should overwrite any previous ones. Also,
user id is assigned by MySQL. Please note that user email is the user’s email address whereas
user cell email is the email address that corresponds to his/her cell phone, in order to receive
text messages. In order to simplify things, you should determine user cell email when the
user is adding his/her information. In particular, you should use the user cell provider infor-
mation, to get cp template (e.g., @vtext.com for Verizon), which you will then combine with
user cell phone (e.g., 4126248843) to create user cell email (e.g., 4126248843@vtext.com)1.

Table: Cell Providers
Column Type Null? Default
cp id int(11) No
cp name varchar(25) No
cp template varchar(50) No

1Information for this mapping has been taken from http://www.makeuseof.com/tag/email-to-sms/

1



Table: Users
Column Type Null? Default
user id int(11) No
user firstname varchar(20) No
user lastname varchar(30) No
user login name varchar(20) No
user login pass varchar(20) No
user email varchar(100) No
user cell phone varchar(10) No
user cell provider int(11) No
user cell email varchar(100) No
last login ts timestamp Yes NULL
last loc id int(11) Yes NULL
last loc checkin ts timestamp Yes NULL

Locations Table Locations is used to record the different locations of interest, along with their rela-
tionships. In particular, we allow for a hierarchy of up to four levels (e.g., City of Pittsburgh ;

University of Pittsburgh ; Sennott Square Building ; Department of Computer Science). The lat-
itude and longitude fields are used for Google Maps, whereas the description field could be anything
(e.g., the full street address).

Table: Locations
Column Type Null? Default
loc id int(11) No
loc name varchar(40) No
loc description varchar(120) No
loc latitude double No
loc longitude double No
parent loc id int(11) Yes NULL

Subscriptions Table Subscriptions is used to record the interests of different users, in terms of locations.
Every subscription for a location by a user needs to also include information about how the user
should be notified, according to the severity of the event. For example, min severity web =
1, means that for events with severity 1 and above, the user expects to see them on the web site;
min severity email = 2, means that for events with severity 2 and above, the user expects to
get an email notification; min severity cell = 3, means that for events with severity 3 and
above, the user expects to get text message notifications.

Table: Subscriptions
Column Type Null? Default
sub id int(11) No
user id int(11) No
loc id int(11) No
min severity web enum(’1’, ’2’, ’3’) No 1
min severity email enum(’1’, ’2’, ’3’) No 2
min severity text enum(’1’, ’2’, ’3’) No 3

2



Dynamic Subscriptions Table Dynamic Subscriptions is used to store user preferences for the case
where an event is matched against their current location (with the implicit assumption that one
is always interested in events related to a location he/she is currently in). In particular, a user is con-
sidered being at a specific location, if he/she has checked into that location within the last 2 hours.
The main preference here is which communication medium to use for the different severity levels
(as was the case for the regular subscriptions).

Table: Dynamic Subscriptions
Column Type Null? Default
dyn sub id int(11) No
user id int(11) No
min severity web enum(’1’, ’2’, ’3’) No 1
min severity email enum(’1’, ’2’, ’3’) No 2
min severity text enum(’1’, ’2’, ’3’) No 3

Events Table Events is used to record new events and their severity level, linked to a specific location.

Table: Events
Column Type Null? Default
event id int(11) No
loc id int(11) No
event severity enum(’1’, ’2’, ’3’) No
event ts timestamp No CURRENT TIMESTAMP
event description varchar(120) No

Event Matching
An event will match a user’s subscriptions in the following two cases:

• the location of the event matches the location of a user’s subscription (table subscriptions handles
this).

• the location of the event matches a user’s last checkin location and based on current time it has been
under 2 hours since the user had checked in (table dynamic subscriptions handles this).

According to the user’s preferences, the matched event could simply be displayed when the user logins
(i.e., via web), lead to an email message or lead to a text message notification via email2. Note that
there is no additional implicit or explicit event matching (i.e., we ignore the hierarchy of the locations for
matching purposes).

Web Pages
You are asked to implement the following web pages:

1. sapiens.php – this is the main entry page to your program, it should have a Login form (showing
first) and a Register form (showing after one clicks Register). After successful login, the new page
has links to the remaining pages (and the last login field is updated). After an unsuccessful login, a
Register form is displayed.

2http://php.net/manual/en/function.mail.php

3



2. event list.php – this is the page listing all events of interest to the particular user. There are two
options: list only those since the last time he/she logged in (=default option) or list all notifications
(relevant to the particular user), since the beginning.

3. event map.php – same as the notify list.php, but instead of a text list, you need to show the events
on a map (using Google Maps API).

4. subscriptions.php – this page lists the user’s current subscriptions and allows him/her to add new
ones. When adding new subscriptions, the location is identified through a search box that sup-
ports autocompletion (using AJAX) from the list of all possible locations (using both loc name and
loc description fields). Specifying the severity level is implemented as a drop-down menu.

5. checkin.php – this page allows a user to “check in” to a certain location (e.g., when going to class
in a specific building). Selection of the location should be done in a hierarchical fashion, starting
from the most general location (i.e., one where parent loc id = NULL) and work downwards. The
user should be able to stop at any level (i.e., check-in at the University of Pittsburgh).

6. new event.php – this page allows a user to add a new event to SAPIENS. The location is selected
with autocomplete, as with the subscriptions.php page. Only users with subscriptions on a given
location or having checked in a given location, can add new events for that location. Once an event
is submitted, SAPIENS will detect whether any notifications need to be send out, and if yes, it will
do so.

What to submit
Make sure that all paths are relative. Submit all files as a single zip file.

Academic Honesty
The work in this project is to be done independently or in groups of 2 – 3 people. Discussions with other
students on the assignment should be limited to understanding the statement of the problem. Cheating in
any way, including giving your work to someone else, will result in an F for the course and a report
to the appropriate University authority for further disciplinary action.

How to submit your assignment
We will use a Web-based assignment submission interface. To submit your assignment:

• Go to the class web page http://db.cs.pitt.edu/courses/cs1520/spring2012 and
click the Submit button.

• Use your pittID as the username and the password you specified at the contact information form for
authentication. There is a reminder service via email if you forgot your password. You must have
already submitted your contact information, if you have not yet you need to do so now.

• Upload your assignment file to the appropriate assignment (from the drop-down list).

• Check (through the web interface) to verify what is the file size that has been uploaded and make sure
it has been submitted in full. It is your responsibility to make sure the assignment was properly
submitted.

You must submit your assignment before the due date (11:59pm, Thursday, April 26th, 2012) to avoid
getting any late penalty. The timestamp of the electronic submission will determine if you have met the
deadline. There will be no late submissions allowed after 11:59pm, Thursday, April 26th, 2012.

[Last updated on April 15, 2012 at 2:32pm EST]

4


