CS 1520 / Fall 2012
Programming Languages
* for Web Applications
|

01 — Introduction to Perl

Alexandros Labrinidis
University of Pittsburgh

* What is Perl

= Practical Extraction and Reporting Language
= 1987
= Larry Wall
= roots in unix applications (awk/sed)
» http://history.perl.org

= Uses of Perl:
= EVERYWHERE :-)
= Scripts for repeated tasks
= Powerful regular expression matching
= Text processing
= Web programming

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 1520/ Fall 2012

How to run Perl programs (revised)

= Use text editor (say pico) to write and save program, say hello.pl

= Option 1:
perl -w hello.pl

= Next time:
perl - w hello.pl

= Option 2:
= Make sure first line of hello.pl is the following
#!/bin/perl -w
chmod u+x hello.pl
./hello.pl
= Next time:
./hello.pl

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 1520/ Fall 2012

Hello World

#!/bin/perl -w
print (“Hello world!\n");

= Observations:
= First line is needed to make program self-executable
= -w flag is highly recommended: it prints out warnings
= All statements in in semicolon ;
= Strings are enclosed in double quotes “ (more on this later)

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 1520/ Fall 2012

Scalar Data: Numbers

= When we have “one of something’
= E.g., numbers, strings

= Examples:Floating point literals = Examples: Integer literals

= 1.25 = 0
= 255.000 = 2001
= 255.0 = 1520
= 3.14159 = -40
= -6.5e24 = 61298040283768
« 1.2E-4 = 61298 040 283 768
Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 1520/ Fall 2012

* Scalar Data: Numbers

= Examples: non-decimal integer

= 0377
is 377 octal, same as 255 decimal

] Oxff
is FF hex, same as 255 decimal

= 0b11111111
is in binary, same as 255 decimal

= 0x50_65_72_7C

Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 1520/ Fall 2012

i Numeric operators

= 2+3 #2plus 3,0r5

s 51-24 #5.1 minus 2.4, o0r2.7

= 3712 # 3 times 12 = 36

 14/2 # 14 divided by 2, or 7

= 10.2/0.3 #10.2 divided by 0.3, or 34

= 10/3 # always floating-point divide, so 3.3333333...

= Modulus operator:

= 10% 3 # 10 module 3, or 1

= 10.5%3.2 # first converted to 10 % 3
= Exponent operator:

= 2™ 3 # 2 to the 3rd, or 8

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 1520/ Fall 2012

* Scalar Data: Strings

= Strings are sequences of characters (like hello).
= Strings may contain any combination of any characters

= Two types:
= Single-quoted string literals
= No variable substitution in string
= Double-quoted string literals
= Allow for variable substitution

Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 1520/ Fall 2012

i Single-quoted Strings

= 'fred' # those four characters: f, r, e, and d
= 'barney' # those six characters
" # the null string (no characters)

= 'Don\'t let an apostrophe end this string prematurely!’
= 'the last character of this string is a backslash: \\'
= 'hello\n' # hello followed by backslash followed by n

= 'hello
there' # hello, newline, there (11 characters total)
S\ # single quote followed by backslash

= Note that the \n within a single-quoted string is not interpreted as a newline,
but as the two characters backslash and n. Only when the backslash is
followed by another backslash or a single quote does it have special
meaning.

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 1520/ Fall 2012

i Double-quoted strings

= "barney" # just the same as 'barney’

= "hello world\n" # hello world, and a newline

= "The last character of this string is a quote mark: \"”
= "coke\tsprite" # coke, a tab, and sprite

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 1520/ Fall 2012

String operators

= Concatenation
= "hello" . "world" # same as "helloworld”
= "hello"."'"'. "world" # same as 'hello world’
= 'hello world' . "\n" # same as "hello world\n”

= String repetition
= "fred" x 3 # is "fredfredfred”

= "barney" x (4+1) #is "barney" x 5, or
"barneybarneybarneybarneybarney”

= 5x4 # is really "5" x 4, which is "5555"

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 1520/ Fall 2012

* Scalar Variables

= A variable is a name for a container that holds one or
more values

= Unlike other languages, there is no variable definition/declaration
in Perl (unless you invoke “strict”)

= Example variable names:
= $a_very long variable that ends_in_1
= $a_very long_variable_that_ends_in_2
= $Fred is different from $fred
= $is_it better with_underscores
= SorlsltBetterWithCaps

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 1520/ Fall 2012

* Assignment

$fred = 17;

give $fred the value of 17

$barney = 'hello’;

give $barney the five-character string 'hello’
$barney = $fred + 3;

give $barney the current value of $fred plus 3 (20)
$barney = $barney * 2;

$barney is now $barney multiplied by 2 (40)

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 1520/ Fall 2012

* Binary Assignment

$fred = $fred + 5;
without the binary assignment operator

$fred += 5;
with the binary assignment operator

$barney = $barney * 3;

$barney *= 3;
$str=%str.""; # append a space to $str
$str.=""; # same thing with assignment operator

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 1520/ Fall 2012

Print

print "hello world\n";

say hello world, followed by a newline
print "The answer is ";
print 6 * 7;

print ".\n";

OR:
print "The answeris ", 6 * 7, ".\n";

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 1520/ Fall 2012

* Scalar Variables into strings

= $meal = "brontosaurus steak";

= $barney = "fred ate a $meal";
$barney is now "fred ate a brontosaurus steak”

= $barney = 'fred ate a' . $meal;
another way to write that

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 1520/ Fall 2012

Lists and Arrays in Perl

Q: What is a List or Array?
= A: a list is ordered scalar data
= A: an array is a variable that holds a list

Example - list literals:

= (1,2,3) #array of three values: 1, 2, and 3
« (“fred”, 4, 5) #array of three values: “fred”, 4, and 5
= ($a, 42) #two values: current value of $a and 42
= ($a+$b, $c+$d) #also two values
= () #the empty list (no elements)
= (1..5) #same as (1, 2, 3,4, 5)
Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 1520/ Fall 2012

More examples - arrays

= @a = (“rachel”, “phoebe”, “chandler”, “ross”,

” 13

“monica”, “joey”);

= Shortcut:

= @a = qw(rachel phoebe chandler ross monica joey);

= qw stands for quote word: it creates a list from the
nonwhitespace parts within the parentheses

= @b = qgw(mary 2 5 had a little 4 lamb 6);

= Q: what will the following do?
print (“the answer is “,Qa,”\n”);

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 1520/ Fall 2012

Arrays - Assignment

@rachel = (1, 2, 3);

#the rachel array is a 3-element list literal

@monica = @rachel;
#the rachel array is copied to the monica array

@joey = 1;

1 is automatically converted to (1)

@ross = gw(one two three);
equivalent to @ross = (“one”, “two”, “three”);

Alexandros Labrinidis, Univ. of Pittsburgh 19

CS 1520/ Fall 2012

Arrays - Assignment (RHS)

@phoebe = gw(smelly cat);
#equivalent to @phoebe = (“smelly”, “cat”);

@chandler = (“here”, “is”, @phoebe, 5, 6);

[TSN L BT} ” W«

#chandler becomes (“here”, “is”, “smelly”, “cat”, 5, 6);

@chandler = (42, @chandler);
#puts 42 in front of chandler

@chandler = (@chandler, “last™);

#puts “last” at the end of chandler

Alexandros Labrinidis, Univ. of Pittsburgh 20

CS 1520/ Fall 2012

10

Arrays - Assignment (LHS)

= ($a, $b, $c) = (1, 2, 3)

#give value of 1 to $a, 2 to $b, 3 to $c

= ($a, $b) = ($b, $a)

#swap $a and $b

= ($d, @ross) = ($a, $b, $c)
#give $a to $d, and ($b, $c) to @ross

= ($f, @ross) = @ross;
#remove first element of @ross and give it to $f
#this makes $f = $b, and @ross = ($c)

Alexandros Labrinidis, Univ. of Pittsburgh 21 CS 1520/ Fall 2012

i Scalar and List context

Perl will do automatic “conversion” of an array,
dependlng on the context.

= List context: normal

= Scalar context: when the array must be “squeezed”
into a scalar variable.
= In this case, the length of the array is returned!

= Examples:
= @barney = @fred; # all of @fred is copied to @barney
= ($a) = @fred; # $a gets the first element of @fred
= $a = @fred; # $a gets the length of @fred
Alexandros Labrinidis, Univ. of Pittsburgh 22 CS 1520/ Fall 2012

11

Array Element Access

= Can access individual elements using the standard []
notation
= Note: element index starts at 0

= Examples:
= @monica = (7, 8, 9);
= $m = $monica[0]; # $m gets the 1st element of @monica
= $monica[0] = 15; # now @monica = (15, 8, 9)
= $C = $monica[2]; # $c gets the last elem. of @monica
Alexandros Labrinidis, Univ. of Pittsburgh 23 CS 1520 / Fall 2012

i Control Structures

Statement blocks

= if/else statement
= unless

= while loop
= until loop

= do while loop
= do until loop

= for statement
= foreach statement

Alexandros Labrinidis, Univ. of Pittsburgh 24 CS 1520/ Fall 2012

12

* Statement blocks
{

first_statement;
second_statement;
third_statement;

last_statement;

}

Alexandros Labrinidis, Univ. of Pittsburgh 25

CS 1520/ Fall 2012

* Control Structures: if/then

= if/else

w if ($a > 5){
#do nothing
}else {
$a++;

}

= unless

= Unless ($a>5) {
$a++;

by

Alexandros Labrinidis, Univ. of Pittsburgh 26

CS 1520/ Fall 2012

13

If/else statement

if (some_expression) {
true_statementi;
true_statement2;

}else {
false_statementl;
false_statement2;

Alexandros Labrinidis, Univ. of Pittsburgh 27 CS 1520/ Fall 2012

* Comparison operators

= Distinction between numeric and string comparison

Numeric String

= Equal: == eq
= Not equal: 1= ne
= Less than: < It

= More than: > gt
= Less than or equal: <= le
= More than or equal: >= ge

Alexandros Labrinidis, Univ. of Pittsburgh 28 CS 1520/ Fall 2012

14

* If/elsif/else statement

if (first_expression) {
true_first_statementli;
true_first_statement?2;

} elsif (second_expression) {
true_second_statementli;
true_second_statement2;

}else {
all_false_statementi;
all_false_statement2;

}

Alexandros Labrinidis, Univ. of Pittsburgh 29

CS 1520/ Fall 2012

* Control Structures: while

= while loop

= while ($a > 5) {
#do something

}

= until

= until ($a <=5){
$a++;

by

Alexandros Labrinidis, Univ. of Pittsburgh 30

CS 1520/ Fall 2012

15

* Control Structures: do/while

= do/while loop

= do{
#do something
} while ($a > 5);

= do/until loop

L] dO{
#do something
} until ($a <= 5);

Alexandros Labrinidis, Univ. of Pittsburgh 31

CS 1520/ Fall 2012

* while and do/while loops

while (some_expression) {
statement_1;
statement_2;

do {
statement_1;
statement_2;

} while (some_expression);

Alexandros Labrinidis, Univ. of Pittsburgh 32

CS 1520/ Fall 2012

16

* while loop example

$stops = 0;
do{
$stops++;

print “Next step is stop number $stop\n”;
} while ($stops <5);

Alexandros Labrinidis, Univ. of Pittsburgh 33 CS 1520/ Fall 2012

* For statement

for (initial_expr; test_expr; re_initialize_expr) {
statement_1;
statement_2;

by

initial_expr;

while (test_exp) {
statement_1;
statement_2;

re_initialize_expr;
¥

Alexandros Labrinidis, Univ. of Pittsburgh 34 CS 1520/ Fall 2012

17

i Foreach statement

foreach $I (@some_list) {
statement_1;
statement_2;

}

@a = (1I 2[3[4[5[6);
foreach $i (@a) {

print $i,”\n”;
by

Alexandros Labrinidis, Univ. of Pittsburgh 35

CS 1520/ Fall 2012

i Back to Arrays

array3.pl

@phoebe = gqw(smelly cat);

@chandler = (“here”, “is”, @phoebe, 5, 6);

foreach $a (@chandler) {
print $a,”\n”;
)

$len = @chandler;
for ($i=0; $i<$len; $i++) {

print “element num $i is $chandler[$i]\n”;

}

Alexandros Labrinidis, Univ. of Pittsburgh 36

CS 1520/ Fall 2012

18

i Array slices

= @fred[0,1] is the same as ($fred[0], $fred[1])

= What do the following do?
= @fred[0, 1] = @fred[1, 0];
« @fred[0, 1, 2] = @fred[1, 1, 1];
= @fred[1, 2] = (9, 10);

Alexandros Labrinidis, Univ. of Pittsburgh 37 CS 1520/ Fall 2012

* Lists/Arrays/Slices (recap)

= Assignment (LHS vs RHS)
= @beniffer = (“ben affleck”, “jennifer lopez”);
= S$beniffer[1] = “jennifer gardner”;
» ($fred, $barney) = (14, 25);
= ($a, $b) = ($b, $a);

= Scalar vs List context
= $a = @beniffer;
= print $a.”\n”;
= print @bennifer.”\n”;

Alexandros Labrinidis, Univ. of Pittsburgh 38 CS 1520/ Fall 2012

19

Lists/Arrays/Slices: Push/Pop

= Push (to right end of array)
= Adds an element to end of list
= @list = (2, 4, 6);
= push @list, 5; # @list now (2, 4, 6, 5);
= Push @list, (3, 10); # @list now (2, 4, 6, 5, 3, 10);

= Pop (from right end of array)
= Removes the last element of a list

= $p = pop @list; # $p becomes 10
. # @list now (2, 4, 6, 5, 3);
Alexandros Labrinidis, Univ. of Pittsburgh 39 CS 1520 / Fall 2012

Lists/Arrays/Slices: Shift/Unshift

= Unshift (to left end of array)

= Adds an element to the beginning of list

» @list = (2, 4, 6);
unshift (@list, 7); # @list now (7, 2, 4, 6);
unshift (@list, 1, 12); # @list now (1, 12, 7, 2, 4, 6);

= Shift (from left end of array)

= Removes the first element of a list

= $p = shift @list; # $p becomes 1
. # @list now (12, 7, 2, 4, 6);
Alexandros Labrinidis, Univ. of Pittsburgh 40 CS 1520/ Fall 2012

20

Lists/Arrays/Slices: Sort/Reverse

= Sort

= sorts elements of an array

= Example:

= @x = gw(small medium large);

= @y = sort (@x); # @x stays the same

. # @y is (“large”, “medium”, “small”)
= Reverse

Reverses current order (i.e., NOT the reverse sort order)
@a = (10, 5, 12, 45);

= @b = reverse @a; # @a stays the same
. # @b is (45, 12, 5, 10)

Alexandros Labrinidis, Univ. of Pittsburgh a1 CS 1520 / Fall 2012
Hashes

= Arrays are nice, index is always numeric

= Q: Would it not be nice to access arrays using strings?
= A: Yes.

= A: using Hashes!

= %oclass is a hash

» Initialization:
= $class{“CS1520"} = “SENSQ 5129”;

= %class = (“CS1520” => “SENSQ 51297,
“CS1555” => “SENSQ 51297);

= %class = (“CS1520”, “SENSQ 5129”, “CS1555”, “SENSQ
5129");

Alexandros Labrinidis, Univ. of Pittsburgh 42 CS 1520/ Fall 2012

21

Hash Functions

= keys(%hashname)
= return the list of current keys
$fred{“a”} = “b”;
$fred{“c”} = “d”;
$fred(15) = 143;
@list = keys(%fred); # @list = (“a”, “c”, 15);
$n = keys(%fred); #$n=3;

foreach $k (keys (%fred)) {
print “we have $fred{$k} at key $k\n”;
b

= values(%hashname)

Alexandros Labrinidis, Univ. of Pittsburgh 43 CS 1520/ Fall 2012

Hash functions (cont)

= each (Yohashname)
= Iterate over all elements of hash hashname

= S$lastname{“Alex”} = “Labrinidis”;
$lastname{“Panos”} = “Chrysanthis”;
$lastname{“John”} = “Ramirez”;

while (($first, $last) = each (%lastname)) {
print “The last name of $first is $last\n”;

}

= delete
» delete $lastname{“Panos”};

Alexandros Labrinidis, Univ. of Pittsburgh 44 CS 1520/ Fall 2012

22

Regular Expressions (intro)

= grep abc somefile > results

= while (<>) {

if (/abc/) {
print $_;
by
b
Alexandros Labrinidis, Univ. of Pittsburgh 45 CS 1520/ Fall 2012

Input/Output

= Output:
= print - simple
= printf - formatted version

= Input:
= standard input is accessed via <STDIN>
= will return 0 if no more input
= <> form is more general; can read from files
= $_ to access line within loop

= Wwhile (<STDIN>) {
print $_;
b

Alexandros Labrinidis, Univ. of Pittsburgh 46 CS 1520/ Fall 2012

Input (cont)

= Scalar versus List context:
= $a = <STDIN>; # reads next line of input
= @b = <STDIN>; # reads all lines at once

= Useful string functions:

= length(str) # returns length of string
= uc() # converts to upper case
s lc() # converts to lower case
= chomp(str) # removes trailing \n
Alexandros Labrinidis, Univ. of Pittsburgh 47 CS 1520/ Fall 2012

Variables: Scalar/Arrays/Hashes

= Scalar:
= $a
» $asdflasdhjfgakhjsdf
= No type defined

= Arrays:

= @b
= $b[1] = second element of array b
= No size defined

= Hashes:

= %C
= $c{“alex”} = element of hash c whose key is “alex”

Alexandros Labrinidis, Univ. of Pittsburgh 48 CS 1520/ Fall 2012

24

* User-defined functions

= sub myfunction {
statement_1,;
statement_2;

}

= sub say_hello {
print “Hello world\n”;
by

= Sub say_what {

print “Hello $what\n”; # $what is global var

Alexandros Labrinidis, Univ. of Pittsburgh 49

CS 1520/ Fall 2012

* Invoking user-defined functions

= Very simple:
= say_hello();

= Can also be part of an expression:
= $a = $b + say_hello();

= Q: How to return values?
= A: using the return command

Alexandros Labrinidis, Univ. of Pittsburgh 50

CS 1520/ Fall 2012

25

How to pass arguments?

= @_ is a special array that holds all arguments to current
function

= Two standard ways to use it:
= $_[0] is the first argument, $_[1] is the second argument, ...
= ($a, $b) = @_; #assigns first arg to $a and second arg to $b

= Examples:
= addtwo.pl

Alexandros Labrinidis, Univ. of Pittsburgh 51 CS 1520/ Fall 2012

Lexical Scope

= Global variables
= Variables outside the function are accessible within the function
= Scope: global

= Private variables in functions

= my ($sum);
= Scope: only valid while inside the current statement block
(i.e., function)

= Semi-private variables in functions
= local ($sum)

= Scope: valid until function terminates
(i.e., even if another function was called from within)

Alexandros Labrinidis, Univ. of Pittsburgh 52 CS 1520/ Fall 2012

26

Examples

= spoof.pl
= add_any.pl:
sub add {
my ($sum); # private variable
Ssum = 0; # initialize
foreach $param (@_) { # go over all args
$sum += $param; # update sum
}
return $sum; # return total
}
Alexandros Labrinidis, Univ. of Pittsburgh 53 CS 1520/ Fall 2012

use strict;

= You can enforce “declaration” of variables by putting
use strict;
at the beginning of your program

= Variables that are not “declared” will cause an error

= Note: we are still only declaring variables by name. No type
information (integer/string/etc) is given!

= Declare variables using my:
= my ($a, $fred, $wilma);

Alexandros Labrinidis, Univ. of Pittsburgh 54 CS 1520/ Fall 2012

27

Command-line arguments

Array @ARGYV holds all arguments

Example:
= argv.pl

By default, <> operator will open all files that are in
ARGV and read through them one at a time (line by line)

Better way to open files:
= open() function

Alexandros Labrinidis, Univ. of Pittsburgh 55 CS 1520/ Fall 2012

Input/Output

= Output:
= print - simple
= printf - formatted version

= Input:
= standard input is accessed via <STDIN>
= will return 0 if no more input
= <> form is more general; can read from files
= $_ to access line within loop

= Wwhile (<STDIN>) {
print $_;
b

Alexandros Labrinidis, Univ. of Pittsburgh 56 CS 1520/ Fall 2012

28

Input (cont)

= Scalar versus List context:
= $a = <STDIN>; # reads next line of input
= @b = <STDIN>; # reads all lines at once

= Useful string functions:

= length(str) # returns length of string
= uc() # converts to upper case
s lc() # converts to lower case
= chomp(str) # removes trailing \n
Alexandros Labrinidis, Univ. of Pittsburgh 57 CS 1520/ Fall 2012

File I/O

= Filehandles: name of an I/O connection
= STDIN: standard input, from keyboard
= STDOUT: standard output, your screen (where print goes)

= open (FILE, “somename”);
= FILE is the new filehandle
= Somename is the external filename

= close (FILE);

Alexandros Labrinidis, Univ. of Pittsburgh 58 CS 1520/ Fall 2012

29

* Open examples

= Input
= open (IN, “myfile.txt”);

= Output
= open (OUT, “>myfile2.txt”);

= Append
= open (APP, “>>myfile3.txt”);

Alexandros Labrinidis, Univ. of Pittsburgh 59 CS 1520/ Fall 2012

* Testing for Success

= Open returns true if was successful, false otherwise
= MUST ALWAYS TEST RETURN VALUE!

= if (open (IN, “myfile”)) {
print “success\n”;
} else {
print “failure\n”;
by

Alexandros Labrinidis, Univ. of Pittsburgh 60 CS 1520/ Fall 2012

30

i A simpler way

= if (open (FILE, “myfile.txt”)) {
#success
}else {
#failure
print “Sorry, I could not find myfile.txt\n”;

= Perl’ s shortcut: die()
= Will print an error message and exit

= open (FILE, “myfile.txt”) | | die (“Sorry, I could not find
myfile.txt”);

Alexandros Labrinidis, Univ. of Pittsburgh 61 CS 1520/ Fall 2012

i File tests

= Test properties of files:
= -s filename tests if file exists and has non-zero size

= Usage:
if (-s $filename) {
#file exists
}else {
files does not exist
b

Alexandros Labrinidis, Univ. of Pittsburgh 62 CS 1520/ Fall 2012

31

